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Abstract
Semantic schema alignment aims to match elements across a pair of schemas based on their semantic representation. It is
a key primitive for data integration that facilitates the creation of a common data fabric across heterogeneous data sources.
Deep learning approaches such as graph representation learning have shown promise for effective alignment of semantically
rich schemas, often captured as ontologies. Most of these approaches are supervised and require large amounts of labeled
training data, which is expensive in terms of cost and manual labor. Active learning (AL) techniques can alleviate this issue by
intelligently choosing the data to be labeled utilizing a human-in-the-loop approach, while minimizing the amount of labeled
training data required. However, existing active learning techniques are limited in their ability to utilize the rich semantic
information from underlying schemas. Therefore, they cannot drive effective and efficient sample selection for human labeling
that is necessary to scale to larger datasets. In this paper, we propose Alfa, an active learning framework to overcome these
limitations. Alfa exploits the schema element properties as well as the relationships between schema elements (structure)
to drive a novel ontology-aware sample selection and label propagation algorithm for training highly accurate alignment
models. We propose semantic blocking to scale to larger datasets without compromising model quality. Our experimental
results across three real-world datasets show that (1) Alfa leads to a substantial reduction (27–82%) in the cost of human
labeling, (2) semantic blocking reduces label skew up to 40× without adversely affecting model quality and scales AL to
large datasets, and (3) sample selection achieves comparable schema matching quality (90% F1-score) to models trained on
the entire set of available training data. We also show that Alfa outperforms the state-of-the-art ontology alignment system,
BERTMap, in terms of (1) 10× shorter time per AL iteration and (2) requiring half of the AL iterations to achieve the highest
convergent F1-score.
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1 Introduction

Semantic schema alignment that finds matching elements
across a pair of schemas based on their semantic repre-
sentation forms a key step towards data integration. The
semantic representation of the schema elements, often cap-
tured as an ontology, associates these elements to entities in
the real world by capturing their properties and structural
relationships w.r.t. the other elements in the schema. Fig-
ure1 shows an example semantic schema alignment between
two schemas, CMT and Conference represented as ontolo-
gies. The green arrows show schema alignments as matching
element pairs across the two schemas, e.g., Author ↔ Par-
ticipant, Document ↔ Contribution, etc.

In the context of semantic schema alignment which
matches and integrates schemas represented as ontology
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graphs, prior art can broadly be categorized into rule dis-
covery and machine learning (ML)-based solutions. Earlier
works on rule discovery for ontology alignment such asAML
[18] and LogMap [13] predominantly rely on the lexical sim-
ilarity between the concepts. Their capability to capture the
ontology structure is limited to concept hierarchies. During
the rule discovery, thesemethods require a significant amount
of human effort or manual intervention.

ML-based solutions such as graph neural network (GNN)-
based techniques have been shown to be effective for
semantic schema alignment [5, 25, 32] as they can capture the
semantic representation of the schema elements such as their
properties, descriptions and relationships to other schema
elements in the vector space. However, most GNN-based
techniques are supervised and require labeled data to train
effective models for schema alignment. Providing labeled
data for training entails a significant amount of effort from
subject matter experts (SMEs), which is very expensive w.r.t.
both cost and manual labor.

With recent advancements in large language models,
ontology alignment solutions such as BERTMap [27] try
to learn contextual representations based on fine-tuning
BERT [17] on ontological text for alignment. BERTMap
can support both unsupervised and semi-supervised settings
by leveraging synonym and antonym discovery heuristics
to generate training labels required to fine-tune language
models. The generated training data needs to be diverse and
representative of the underlying alignment task to train effec-
tive models. This would involve SMEs to manually look at
the schemas and identify matching and non-matching pairs
of entities across two schemas and provide them as positive
and negative samples for model training. The problem gets
further exacerbated with multiple large schemas to be inte-
grated into a unified semantic schema.

Active learning (AL) alleviates this problem with a
human-in-the-loop approach that provides labeled data incre-
mentally and on-demand to train a model. The goal is to get
the highest return in terms of model performance while min-
imizing the amount of manual labeling effort. AL pipelines
typically employ (1) sample selection techniques to choose
representative and informative samples for human labeling,
(2) label propagation as an optional optimization to prop-
agate the training labels obtained from the human to other
unlabeled samples which are similar to the labeled samples,
and (3) blocking also as an optional optimization to prune
away non-ambiguous samples of data and scale the process
of sample selection to large datasets.

Sample selection methods (e.g., entropy-based sample
selection [2, 43, 60] and Query-by-Committee [40]) mostly
rely on model performance to drive sample selection.
Importance weighted sampling [7, 38] selects samples that
minimize the sampling bias and are representative of the
true underlying data distribution. Other techniques such as

Fig. 1 Schema alignment of CMT and Conference

gradient [57] and error-based sample selection [24] are com-
putationally expensive and hence fail to scale to large datasets
while maintaining interactive sample selection times. There
also exist graph-aware sample selection techniques for link
prediction between two graph nodes [6, 47]. These graph-
aware techniques mostly rely on aggregating structural
properties such as degree and centrality sum. However, they
do not exploit the semantics of the relationships between
the nodes in the graph for sample selection. Similar to sam-
ple selection, label propagation [52] and blocking [69, 70]
techniques are either model dependent or based on string
similarity heuristics, which are devoid of any meaningful
semantics capable of relating schema elements to real-world
entities and relationships.

In this paper, we propose Alfa, a novel active learn-
ing framework to address the aforementioned limitations of
existing AL techniques for semantic schema alignment. The
key idea of Alfa is to exploit the rich semantic information
from the underlying schemas to drive the process of AL. We
use a GNN to capture the semantic representation of the ele-
ments that includes properties such as names, descriptions as
well as relationships with other elements in the schema. We
propose a novel ontology-aware sample selection algorithm
that minimizes human labeling cost by choosing samples of
schema elements across a pair of schemas based on their like-
lihood of being mis-classified by the GNNmodel. To further
reduce human effort in labeling training data, we develop a
novel ontology-aware label propagation algorithm that uti-
lizes human-labeled schema element pairs and propagates
their labels to semantically similar pairs of schema elements.
Finally, to scaleAlfa to large schemas and to handle the issue
of class imbalance (label skew) in the labeled training data,
we propose a semantic blocking technique that prunes away
pairs of schema elements that are unlikely matches based on
their semantic representation. To the best of our knowledge,
Alfa is the first to address the problemofAL forGNN-based
semantic schema alignment where schemas are represented
as ontologies.

We conduct an extensive evaluation of our proposed
solution on three real-world datasets against representative
baselines. Specifically, we choose a state-of-the-art GNN-
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based schema alignment model [25], multiple AL baselines
and an end-to-end semi-supervised ontology alignment solu-
tion, BERTMap [27]. Note that we purposely utilize a
lightweight GNN model (i.e., RGCN [62]) in Alfa with a
modest learning rate as well as a limited number of layers
and training epochs. This ensures that the user waiting time
is are low when Alfa is used with a human oracle in the AL
loop.

Our experimental evaluations on three real-world datasets
show that (1)Alfa leads to a substantial reduction (27–82%)
in the cost of human labeling, (2) semantic blocking reduces
label skew up to semantic blocking reduces label skew up
to 40× without adversely affecting model quality and scales
AL to large datasets, and (3) sample selection achieves com-
parable schema matching quality (90% F1-score) to models
trained on the entire set of available training data. We show
that Alfa outperforms a state-of-the-art ontology alignment
system, BERTMap [27], in terms of (1) 10× shorter time per
AL iteration and (2) requiring half of the AL iterations to
achieve the highest convergent F1-score.

Our main contributions are outlined as follows:

– An end-to-end active learning framework forGNN-based
semantic schema alignment.

– A novel ontology-aware sample selection algorithm for
human labeling that exploits the semantic representation
of the schema elements tominimize human labeling cost.

– An efficient ontology-aware label propagation algorithm
that propagates labels based on their semantic represen-
tation to further reduce the cost of labeling training data.

– An effective semantic blockingmethod that prunes likely
mis-matches between schema elements to scale to larger
schemas, to reduce the sample selection latency without
sacrificing the model quality.

– Extensive experimental evaluation of Alfa against state-
of-the-art baselines over real-world data sets.

2 Related work

2.1 Schemamatching

Relational schema matching Schema alignment or match-
ing is a critical step in data integration for downstream
tasks such as entity matching. For simple relational schemas,
columns are aligned by domain experts manually [35, 41, 72]
or semi-automatically [28]. Heuristic-based approaches for
schema matching [4, 54, 65] use column similarity infor-
mation such as data type, structure (if schema is a graph),
linguistic and constraint similarity, and other transformation-
based standardization techniques that learn rules or regular
expressions. These approaches lack generalizability when
the test pairs do not adhere to the same patterns as the train-

ing pairs, and cannot scale to large ontology graphs. Gal et
al. [64] and Shraga et al. [21] are more recent works that
combine deep learning with heuristic-based approaches to
improve generalization to new schemas. However, all these
approaches are still confined to the relational representation
of the schema.

Logical reasoning-based schema matching Semantic
schema (ontology) matching solutions such as AML [18,
71] and LogMap [13, 30] rely on lexical matching between
the schema elements combined with simple hierarchical
information in the ontology to discover matches. LogMap
derives matching rules in Horn Logic from the discov-
ered matches and it requires logical inconsistency discovery
mechanism and human assistance to iteratively repair and
discover new rules. Recently, Medto[25] and BERTMap
[27] utilize a supervisedGNNor languagemodels for schema
matching, outperformingAMLandLogMap.However, these
approaches either require a lot of training data (for Medto)
or fine-tuning effort (for semi-supervisedBERTMap). Super-
vised GNNs have also been applied to the task of knowledge
graph alignment [74] but they too are plagued by the need
for diverse and large training sets.

Active learning for schema matching Cate et al. [66]
alleviate the need for a lot of training data during schema
matchingusing active learning.However, they requirematch-
ing and non-matching relational instances as training data
to learn rules for schema matching. Such instance data is
unavailable for several real-world ontologies [44, 45] thus
making [66] inapplicable to semantic schema matching.

2.2 Active learning

Generic active learning Generic AL techniques include
entropy-based selection [2, 43, 60], Query by Committee
(QBC) [40], importanceweighted sampling [7, 38], gradient-
based [57] and error-based selection [24]. Among these
selection strategies, gradient and error-based techniques
re-train the classifier on each unlabeled pair to compute
their ambiguity (i.e., the likelihood of being mis-classified),
thereby rendering them not scalable in practical settings.
Additionally, these AL techniques, if used out-of-the-box,
will be ineffective in capturing the underlying semantic infor-
mation available in the ontology graphs. The reason is that
most of the generic AL strategies select the ambiguous con-
cept pairs simply based on the model performance and are
ontology-agnostic.

Active learning for GNNs Cai et al. [9], Gao et al. [23]
use theGNNs trained from the initial AL iterations to approx-
imate the final embedding space. However, these approaches
may suffer from low approximation accuracy since the graph
models obtained from the initial training rounds may not be
accurate due to the insufficient training labels at the begin-
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ning.Wu et al. [73] and Zhang et al. [76] propose a decoupled
GCN for approximating the final embedding space. The idea
is to construct a simplified GCN model by removing the
trainable parameters from its message passing phase. The
approximated node embeddings are generated by iteratively
aggregating their k-hops neighbors without any node-wise
transformations. However, it only works for the GCN model
and cannot be easily extended to a wide range of graph
embedding methods. Alfa, on the other hand, is extensible
and not dependent on a specific graph embedding approach.
Also, most existing AL solutions for GNNs mainly focus on
node classification over a single graph input.

Active learning for link prediction AL techniques have
also been developed for link prediction over social networks
and knowledge graphs (KGs). AL for link prediction [6]
selects those pairs which have the highest structural sig-
nificance in the graph. To avoid generating the pool of all
possible node pairs, Cesa Bianchi et al. [12] partition the
graph into several spanning trees and only query the labels for
cross-tree edges. Ostapuk et al. [47] maximize the diversity
or stratification of the selected pairs in a KG by clustering
the triples and by selecting representative uncertain triples
from diverse clusters or strata. Cheng et al. [15] assume
a strict 1:1 correspondence between users from two social
media platforms, called the anchor node assumption. So if
a pair of users is a match, neither of these users can have
a match with any other user profile across these platforms.
Such an anchor node assumption does not hold in seman-
tic schema (ontology) matching. Overall, a majority of these
graph-aware AL techniques for link prediction mostly relies
on aggregate structural properties such as degree or central-
ity sum without exploiting the semantics (or meaning) of the
relationships represented by the graph edges for deriving the
appropriate network representation.

Active learning for EM using MLPs Existing work on
entity matching (EM) [33, 39] applied active learning to
fully-connected feed-forward neural networks such as the
multi-layer perceptrons (MLP). Concretely, Meduri et al.
[39] represent a pair of tuples to be matched as a vector of
similarities computed over the attribute pairs in those tuples.
These feature vectors are then fed to an MLP with a sig-
moid function as the output layer. If the sigmoid function
emits a probability close to 0.5, this indicates that the MLP
is unsure about the label of this pair of tuples, which should
be assigned to an oracle for labeling. This approach is not
attribute-invariant and hence cannot be applied in domain
adaptation scenarios where an EM model trained on one
label-abundant domain needs to be adapted to a label-scarce
domain using transfer learning.

Kasai et al. [33] avoid using pre-determined similarity
functions to represent tuple pairs. Sequence models such
as bi-directional GRUs along with fastText embeddings [8]
are used to learn attribute representations, and they are

made attribute-invariant by aggregating individual attribute
embeddings to generate tuple-level embeddings. Such fea-
ture representations can also be generated by auto-encoders
and LSTMs [67].

2.3 Blocking

Blocking is a generic optimization technique commonly used
to reduce the search space in entitymatching andother related
tasks. Jaccard similarity-based blocking has been extensively
used in the EM literature [39]. It prunes the obvious non-
matching entity pairs in the search space by employing a
Jaccard similarity threshold. Rule-based blocking for active
learning [50, 51] employs conjunctive blocking predicates
that are explicitly defined by a human and are incorporated
into the matching rules learned in disjunctive normal form
(rule DNFs). Deep learning (DL)-based blocking techniques
[67] have been proposed to overcome the need for human-
defined blocking predicates. They divide the blocking task
into two steps—(a) representation learning and (b) vector
pairing. Representation learning is used to learn embeddings
for the tuples to be aligned inEM tasks.Vector pairing applies
locality sensitive hashing (LSH), nearest neighbor techniques
with a top-k parameter or similarity functions such as cosine
or Jaccard with a similarity threshold. However, DL-based
solutions such as AutoBlock [77] require labeled pairs to
learn embedding vectors for blocking. To overcome this
limitation, Jain et al. [29] use an ensemble of pre-trained
transformer models with nearest neighbor indexes from the
FAISS library [31] that are iteratively refined by oracle-
supplied labels.

In Alfa, we leverage a semantic blocking strategy for
ontology alignment that relies on a pre-trained language
model to generate embeddings and subsequently applies
clustering using Euclidean distance as the nearest neighbor
detector to find post-blocking pairs. Our blocking is currently
utilized as a pre-processing step outside the AL loop. Inte-
grating blocking into Alfa’s AL pipeline is left for future
work.

3 Preliminaries and system overview

In this section, we first describe how semantic schema align-
ment differs from relational schema alignment and entity
alignment in knowledge graphs. We then introduce a GNN-
based supervised model for schema alignment where the
schemas are represented as ontologies. Lastly, we briefly
describe the active learning techniques and terminologies fol-
lowed by Alfa system overview.
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3.1 Relational versus semantic schema alignment

Relational schema alignment focuses on aligning the struc-
ture of relational database schemas. A relational schema
contains the metadata of tables and columns which speci-
fies the column names, their data types and constraints such
as functional dependencies, check constraints, primary and
foreign key constraints connecting the tables at the metadata
level. The goal of relational schema alignment is to map cor-
responding tables and columns from different databases.

Semantic schema alignment goes beyond the relational
schema alignment and focuses on aligning the underlying
meaning and semantics of data. It involves understanding
the real-world entities, their attributes, and the relationships
between them, which are often represented as an ontology.
The correspondence between an ontology and its schema
counterpart is not always direct. Depending on how an ontol-
ogy is created, a concept in the ontology could refer to a
column in the relational schema, or occasionally be mapped
to a table with its columns appearing as the data properties
of this concept [25]. The semantic information, such as con-
nected concepts and the labeled edges between them, in the
form of neighborhood information from an ontology, is cru-
cial to semantic schema alignment or ontology alignment
[13, 18, 25].

3.2 Entity alignment in knowledge graph versus
semantic schema alignment

Entity alignment in knowledge graph (KG) (a.k.a KG align-
ment) aims to find equivalence relations between entities
in different knowledge graphs which semantically represent
the same real-world object. The entities in a KG are often
represented as triples in a semi-structured format. The key
distinction between semantic schema (or an ontology) and
KG is that an ontology concept represents a generalization
of entities stored in a KG. For example, the semantic schema
shown in Fig. 1 refers to entities such as Author, Document,
Reviewer as abstract/general concepts whereas KG contains
the actual names or titles of these concepts. In other words,
semantic schema matching is a meta-level matching task
whereas entity alignment in KG can be seen as an instance-
level matching task.

Zhang et al. [75] survey entity alignment in KG using
representation learning and highlight translation-based and
GNN-based embeddingmodels both of which capture neigh-
borhood of an entity either in a triple or at a broader
level in the knowledge graph. As mentioned in [75], most
KG alignment methods and the corresponding benchmark
datasetsmake the anchor node assumption (a.k.a thebijection
problem). Specifically, the ground truth in entity alignment
datasets often has a 1:1 correspondence where an entity from
one knowledge graph only matches to a single entity from

Fig. 2 GNN-based semantic schema alignment

another KG. In this work, we neither assume 1:1 correspon-
dence between schemas nor observe the bijection problem in
the benchmark datasets used for semantic schema matching.

Moreover, an ontology is generally well-curated and cor-
responds to the schemas of relational databases. On the other
hand,KGs are often extracted from semi-structured data such
as web pages and unstructured data sources, and they are
generally incomplete and are affected by the open-world
assumption. In this work, we assume that the ontology is
complete and accurate. We match ontologies for the purpose
of creating a unified ontology that can serve as a unified
semantic schema.

3.3 GNN-based semantic schema alignment

Fig. 2 shows the architecture of a GNN-based semantic
schema alignment model (e.g., Medto[25]) to find match-
ing elements across two input schemas. It utilizes a GNN to
generate a low-dimensional representation (compact embed-
ding) for each node (i.e., a schema element) in the two
input schemas. It then uses a classifier such as a Multi-Layer
Perceptron (MLP) with a sigmoid output layer to classify
a given pair of elements across the two input schemas as
a match or non-match. The GNN-based semantic schema
alignment model takes the two ontology graphs representing
the schemas to be matched, a set of initial feature vectors for
each schema element (concept) in the ontology graph and a
training set of labeled matching and non-matching ontology
concept pairs as input. The initial set of feature vectors is typ-
ically generated from the schema element properties such as
their label names and descriptions using a pre-trained lan-
guage model.

We first pre-process the labels and the textual description
(if available) of the schema elements.We tokenize themusing
the NLTK word tokenizer [42]. We remove the stop-words,
special characters such as punctuation and arithmetic sym-
bols from the tokens. Then,we concatenate the pre-processed
label and description tokens separated by a whitespace and
feed the resulting text into a pre-trained language model.
In this paper we choose Universal Sentence Encoder (USE)
[11], which generates the embeddings as the initial semantic
representations of schema elements.

The GNN model takes the schema element properties as
well as their structure (relationships with other schema ele-
ments) into account while generating a semantically rich
representation of each schema element as a compact embed-

123



986 V. V. Meduri et al.

ding. The alignment model also distinguishes between the
different kinds of relationships among the schema elements
such as is-A or hierarchical relationships, unions, and other
functional relationships such as writes and reviews as shown
in Fig. 1. A GNN typically has a graph encoder-decoder
architecture [25, 34, 54, 62] that learns the compact embed-
dings for each node in a graph based on its local neighboring
nodes, the labeled edges connecting the node to its neighbors
and the initial semantic representations of the node. RGCN
[62] is a representative relational graph convolutional net-
work that captures both type and direction of an edge into a
node’s local neighborhood during the node embedding gen-
eration and has shown promising results for link prediction
on knowledge graphs. Hence we choose RGCN to propa-
gate information from neighboring nodes to a target node
while generating its embedding. The objective is to allow
nodes with similar neighborhoods to be closer to each other
in the embedding space. For details about how the message-
passing framework is designed in RGCNs to generate the
node embeddings, we refer the reader to [62].

Finally, we use a multi-layer perceptron (MLP) and a sig-
moid function to classify pairs of concept nodes as match
or mis-match for ontology alignment. To train this classifier,
labeled pairs of concepts along with their expected labels are
fed to the model as input. For the matching probability at
the sigmoid function to match the expected class label, we
use the binary cross entropy as the loss function, which helps
in backpropagating the training loss through both the MLP
and the GNN layers. This results in adjusting the weights
of both the MLP as well as the GNN, thereby refining not
only the prediction accuracy of the MLP, but also enhanc-
ing the node representativeness of the compact embeddings.
This is because we are simultaneously training both the GNN
and the MLP based on a single loss function in a stacked
manner. After several epochs, GNN training converges when
the expected labels match the predicted labels, and we also
get refined compact embeddings for the nodes in the ontol-
ogy. During prediction, given an unlabeled pair of concepts,
RGCN takes the initial USE embeddings of each concept
node as input and generates the compact embeddings for each
concept based on its ontology neighborhood. Next, the MLP
takes the embeddings for the pair of concepts as input and
predicts thematching probability for the pair at the (sigmoid)
layer. The pair is deemed as a match if the matching proba-
bility is above 0.5.

Learning such GNN-based schema alignment model in a
supervised manner requires a large amount of labeled train-
ing data consisting of matching and non-matching pairs of
schema elements. During the training process, the losses
based on the classification labels are back-propagated to learn
the appropriate node embeddings of the schema graphs. Dur-
ing the prediction phase, themodel generates the embeddings
and uses them as input to the classifier to identify matching

or non-matching pairs of schema elements. Active Learn-
ing (AL) can significantly reduce the amount of labeled data
required to train such models.

3.4 Generic active learning framework

A general AL framework enables an iterative human-in-
the-loop process wherein a model is iteratively trained on
data labeled by a human or oracle at a given cost. The
iterative training process stops when the desired matching
quality of the model is achieved or when the labeling bud-
get is exhausted. The key components of an AL framework
are described briefly below. Note that sample selection is a
mandatory component in an AL framework whereas label
propagation and blocking are optimization techniques that
can be optionally deployed.

3.4.1 Sample selection

At the heart of a typical active learning framework lies a
smart sample selection technique that chooses informative
samples from the underlying data distribution for human (or
oracle) labeling in each AL iteration. The target is to learn an
effectivemodelwith theminimumamount of labeled training
data in the fewest possible AL iterations. This is achieved by
choosing samples which will majorly influence the model
based on one or more factors such as their representativeness
of the underlying data distribution, associated uncertainty of
model prediction, expected effect on model learning, etc.

3.4.2 Label propagation

To further optimize the return on investment and to reduce the
cost of human labeling, label propagation canbeused to prop-
agate the training labels obtained from the human (or oracle)
in each AL iteration to other unlabeled training data based on
the similarity of the unlabeled data to the oracle-labeled data.
A variety of different techniques and similarity metrics can
be used for label propagation based on the type of training
data being used and the model being trained. The choice of
this metric and its effective implementation affect the qual-
ity of label propagation and hence have a direct bearing on
the performance of the model being trained. Label propaga-
tion is alternatively termed as mapping extension [27], weak
supervision [52] and label spreading [14] in prior art.

3.4.3 Blocking

Unlike sample selection and label propagation which are
applied in eachAL iteration, blocking is a pruning step that is
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Fig. 3 Alfa: system architecture

typically applied once before commencing active learning.1

To scale the process of sample selection to large datasets,
blocking techniques are used to prune away obvious non-
ambiguous samples from themajority classwhich is typically
the non-matching (or the negative label) class. This results in
a reduced search space of candidate samples depending on
the level of aggression with which blocking is applied. Addi-
tionally, blocking is also used to control the class imbalance
(or label skew) to train effective models efficiently. Block-
ing helps achieve interactive sample selection times over
large datasets, making the AL pipeline suitable for the inclu-
sion of a human-in-the-loop to perform the labeling task. On
the other hand, blocking is also prone to pruning away the
ambiguous samples from the minority class (i.e., the positive
label class containing all the matching pairs) which could
have benefited from human labeling. The trade-off thus is
between scalability and the desired classification quality of
the model.

3.5 ALFA system overview

Give a pair of semantic schemas (ontologies) OL and OR , a
human oracle H , a supervised GNN-based semantic schema
alignment model M , and a labeling budget B, our goal is
to design an active learning framework that queries H for
the minimum number of informative training labels L such
that |L| ≤ B and the re-trained version of M predicts the
equivalent schema element pairs across OL and OR with
a high accuracy. Figure3 shows the architecture of Alfa,
our proposed AL framework, that exploits the rich seman-
tic information of the underlying schemas represented as
ontologies combined with model confidence for smart sam-
ple selection, label propagation and blocking. Collectively,
they ensure effective use of the labeling budget by learning a
high-quality schema alignmentmodel in fewerAL iterations.

Alfa consumes an ontology pair to be matched and gen-
erates the Cartesian Product of all possible schema element
(concept) pairs as the pool of unlabeled examples, which can
be quite extensive for large ontologies. A semantic block-

1 Note that variants of blocking which are applied in each AL iteration
exist in the entity matching literature [29].

ing algorithm prunes the obvious non-matches to reduce
the search space for sample selection and class imbalance
(Sect. 4.3). A small seed set, typically 0.1–0.3% of the post-
blocking pairs, is manually labeled (with the assistance of
automatic labeling heuristics or labeling functions [55] if
necessary) and fed to a learner to train an initial GNN-based
schema alignment model. The actual sizes of the seed label
sets are between5 and40 across all our experimental datasets.
This bootstrapping operation is required because we use a
supervised GNN model that needs to be initialized before
applying AL.

In each AL iteration, an ontology-aware sample selec-
tor combines the rich semantic information from the input
schemas with the model output to choose a batch of ambigu-
ous samples for human labeling (Sect. 4.1). The batch size
is set based on the #labels the human oracle prefers to label
perAL iteration and themaximum#iterations possiblewith a
pre-constrained labeling budget. To further reduce the human
labeling effort, we design ontology-aware label propagation
which identifies concept pairs that are semantically similar to
the pairs labeled by the human and infers the labels for such
pairs. The pairs labeled by the human and the pairs whose
labels are inferred through label propagation are together
included as additional training data into the existing training
set. The model is re-trained on the cumulative set of labeled
concept pairs at the end of each AL iteration.

4 ALFA system design

In this section,we describe themain building blocks of Alfa.
We first describe the core component which is our ontology-
aware sample selection, followed by our optimizations i.e.,
ontology-aware label propagation and semantic blocking in
detail.

4.1 Ontology-aware sample selection

Our ontology-aware sample selection algorithm chooses
ambiguous pairs of schema elements that are likely to be
mis-classified (i.e., a matching pair being mis-predicted to
be non-matching and vice-versa) and passes them for human
labeling. The likely mis-predictions are detected based on
the labeling disagreement between the trained model and
an ontology clustering algorithm that clusters ontology con-
cepts (i.e., schema elements) in the unified ontology graph.
The unified ontology graph combines both the input ontolo-
gies into a single graph. Note that both the model and the
clustering are iteratively updated, thereby resulting in the
detection of an updated set of ambiguous samples in each
AL iteration. Our sample selector does not explicitly control
the class skew or the ratio of matching and non-matching
pairs in each AL iteration. The class imbalance issue is
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resolved by our semantic blocking optimization (details are
in Sect. 4.3) which is applied before AL commences. How-
ever, it was empirically observed that the ambiguous samples
comprised concept pairs from both the classes (matching and
non-matching) over several AL iterations.

Figure 4 illustrates our ontology-aware sample selection.
As we have earlier mentioned in Sect. 3.3, we use RGCN
as the GNN model that is trained over several active learn-
ing iterations. In each active learning iteration, the model
is trained using the current set of labeled training pairs. The
binary cross entropy loss computed at the output of theMulti-
layer Perceptron (MLP) classifier based on the model output
and the ground truth provided by the labeled training pairs
is backpropagated to update the model. The compact node
embeddings produced by the RGCNmodel in each AL itera-
tion are fed to (1) anMLP classifier that predicts the labels of
the remaining unlabeled pairs and (2) a K -means clustering
algorithm [36, 37] that clusters the ontology concepts from
the remaining set of unlabeled pairs, based on the Euclidean
distance2 between their embeddings.

Each candidate unlabeled pair in green dashed circles
shown in Fig. 4, is scored using (1) the RGCNmodel + MLP
classifier (shown as the green arrow output in Fig. 4) and (2)
the clustering model. If both the ontology concepts in the
candidate pair lie in the same cluster, they are likely to repre-
sent the same semantic concept andhence canbe considered a
match. However, if the RGCN+MLP-based alignment model
predicts the same pair as a non-match, there is a disagreement
implying a likelihood of mis-classification, namely Likely
False Negative (LFN). Similarly if a pair of concepts lies
across two clusters, they likely represent different semantic
concepts and if the RGCN+MLP-based model predicts the
same pair as a match, this disagreement implies a likelihood
of mis-classification, namely Likely False Positive (LFP).
The disagreement between the classification and the cluster-
ing models in essence quantifies the ambiguity, which makes
the pair an ideal candidate for human labeling.

Algorithm 1 shows the details of the ontology-aware sam-
ple selection algorithm in each AL iteration. It takes as input
(1) the two ontologies (OntL and OntR) representing the
schemas, (2) the remaining pool of unlabeled candidate pairs
of nodes across the two ontologies, Premaining , to choose the
samples from, (3) the batchSize indicating the number of
samples required to be selected for labeling in an AL iter-
ation, (4) a reference to the GNN-based alignment model,
and (5) the number of clusters ncluster for ontology clus-
tering. Line 1 creates a set of input nodes from two input
ontologies. Line 2 computes the ontology clusters based on
the RGCNmodel embeddings using K -means clustering and

2 Scikit library uses Euclidean distance by default for K -means clus-
tering, replacing which by other metrics does not bring a significant
difference in clustering quality.

Algorithm 1 ontoAwareSelection(OntL , OntR , Premaining,
batchSize, model, ncluster)
1: Psel = {}, InputNodes ← NodesOntL ∪ NodesOnt
2: Clusters ← ontologyClustering(InputNodes, ncluster,

model.Emb)
3: scores ← []
4: for j : 0 to |Premaining| − 1 do
5: if nodes in a given pair Premaining[ j] belong to the same cluster

then
6: scores[ j] ← 1.0 − model.PredProb(Premaining[ j])
7: else
8: scores[ j] ← model.PredProb(Premaining[ j])
9: end if
10: end for
11: sorted Pairs ← Sort Premaining DESC on scores
12: Psel ← choose top-k pairswith the highest score from sorted Pairs

where k = min(batchSi ze, |sorted Pairs|)
13: return Clusters, Psel

the ontology clusters are updated in each AL iteration. Lines
4–10 compute the disagreement score for each remaining pair
based on the RGCN-based schema alignment model predic-
tion probability,PredProb. If the nodes in a given pair belong
to the same ontology cluster (indicating a match as per the
ontology clustering), then 1.0—model.PredProb reflects the
quantum of disagreement. A highmodel prediction probabil-
ity indicates a predicted match and vice-versa. Similarly, if
the nodes belong to different clusters (indicating amis-match
as per the ontology clustering), the model prediction proba-
bility provides the disagreement score. Finally, lines 11–12
sort all the unlabeled pairs based on the disagreement score
in a descending order and choose the top-k pairs for human
labeling. The algorithm also returns the generated clusters
along with the top-k pairs in line 13 that are used as input by
our label propagation algorithm.

Labeling disagreement is also illustrated in Fig. 4. For a
given pair of nodes, Document from the CMT ontology and
Poster from the Conference ontology, the model predicts a
low similarity score of 0.25, whereas the ontology clustering
algorithm based on Euclidean distance predicts that Docu-
ment and Poster are in the same cluster. The pair receives
a high ambiguity score of 0.75 (i.e., 1.0—model.PredProb)
and is sent to the human oracle who labels it as a match.
Upon re-training the model, the model adjusts its prediction
probability to 0.75 for this pair thereby accurately classifying
it.

Note that both ontology clustering and model prediction
are based on the RGCN model embeddings. Therefore, the
model quality and the cluster quality improve with more AL
iterations as the embeddings are refined.Given that clustering
is iteratively applied on model embeddings corresponding to
concepts belonging to the remaining unlabeled pairs, the pro-
duced clusters are non-homogeneous and large in the initial
AL iterations and shrink in the later iterations as the remain-
ing unlabeled pairs become fewer.
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Fig. 4 Ontology-aware sample selection

Another key insight here is that each method tries to cap-
ture the real underlying data distribution differently. While
the ontology clustering uses the Euclidean distance between
the node embeddings as the similarity metric to form clus-
ters of similar nodes, the schema alignment model uses a
trained neural network, i.e., an MLP with a sigmoid output
layer to determine the similarity between two embeddings.
Hence, labeling disagreement between the ontology cluster-
ing and the neural network captures the ambiguity in the way
the actual distribution is modeled by these two approaches.
Thus, a pair with such disagreement is a good candidate for
human labeling.

Note that we use the labeling disagreement as a heuristic
and find it conceptually similar to the notion of vari-
ance computation in query-by-committee (QBC), which was
proven to be effective in earlier works [16, 20, 63]. QBC
can iteratively reduce the version space, i.e., the candidate
space of classifiers that can correctly classify the training
labels. This iterative reduction in the version space was
shown to quickly converge active learning. Additionally, it
is worth noting that we do not use a committee of sev-
eral supervised learning models of the same kind. Instead,
our committee comprises an unsupervised clustering algo-
rithm and a supervised GNN model. Clustering employs
the Euclidean distance metric and assigns equal weight to
each dimension in the GNN-generated embeddings. On the
other hand, the MLP is data-driven and learns the appro-
priate weight for each dimension based on the embeddings
and their expected labels. This ensures that both models cap-
ture different signals for ontology alignment, which makes

Fig. 5 Ontology-aware label propagation in Alfa

Alfa’s label disagreement computation informative and
effective.

4.2 Ontology-aware label propagation

To further reduce human effort in labeling training data, we
propose a novel ontology-aware label propagation algorithm
that utilizes the schema element (node) pairs labeled by the
human and propagates their labels to semantically similar
pairs of schema elements across the two input ontologies.

Figure 5 showshowwepropagate the label LP assignedby
a human for a specific pair Pairref to several other unlabeled
samples (concept pairs). We do so by selecting the unlabeled
pairs U which are semantically most similar to Pairref and
hence can borrow the same label LP . For each pair Pairref
(of nodes across the two ontologies) labeled by a human,
we first compute the cosine similarity, Simref, between the
embeddings of the nodes (Pairref.left, Pairref.right)within that
pair. We then identify the clusters that each node in the pair
Pairref belongs to, in order to find other nodes that are sim-
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ilar to the nodes in Pairref. We then compute the Cartesian
product of all possible pairs of nodes across the two iden-
tified node clusters, that belong to two different ontologies
provided as input. Note that if both the nodes in the pair
belong to the same cluster, the algorithm chooses Cartesian
product of all possible cross-ontology pairs within the same
cluster. Wemark these as the pool of candidate pairs for label
propagation. Further, we handle the propagation of match-
ing (+) and non-matching (-) labels provided by the human
to Pairref as two separate cases.

Case 1: matching pair This case handles the propaga-
tion of a matching label LP assigned by a human to Pairref.
All pairs within the pool of candidate pairs whose cosine
similarity between the node embeddings exceeds Simref,
are assigned the matching label LP . The example in Fig. 5a
shows Pairref as the two nodes across Clusters 1 and 2 con-
nected with a solid green line. The qualifying pairs, whose
node embedding similarity exceeds Simref (0.68), are shown
connected with dashed green edges. The intuition here is that
if a human labels a node pair as a match, then the candidate
pairs similar to the labeled pair (having their nodes belong-
ing to the same clusters as the ones in Pairref) and whose
constituent node similarity is greater than that of the labeled
pair could borrow the same label.

Case 2: non-matching pair This case handles the prop-
agation of a non-matching label LP assigned by a human to
Pairref. All pairs within the pool of candidate pairs whose
cosine similarity between the node embeddings is below
Simref, are assigned a non-matching label LP . Symmetri-
cally, Fig. 5b shows Pairref as the two nodes across cluster 1
and 2 connected with a solid red line that is labeled as a non-
match by the human. The pairs connected by the red dashed
lines having their node embedding similarity below Simref

(0.44) borrow the negative label from Pairref.
Having determined the methodology for label propaga-

tion, the next step is to determine the quantum of label
propagation in each AL iteration that would be sufficient
to achieve the intended reduction in human labeling effort
while also maintaining the desired level of accuracy. Alfa
therefore provides a flexible mechanism to control the trade-
off between the reduction in human labeling cost and model
quality (F1-score) using three different modes of propaga-
tion.

Mode 1: unrestricted In this mode of label propagation,
the human-provided label for each reference pair, Pairref,
is propagated without any restrictions to all eligible concept
pairs based on the method described in cases 1 and 2 above.
This is the most aggressive form of label propagation and
provides the maximum amount of reduction in human label-
ing effort at the cost of achieving a lower model quality.

Mode 2: conservative In this mode, the human-provided
label for Pairref is propagated more conservatively to top-k

unlabeled pairs which are semantically similar3 to Pairref
and are ranked by their constituent node embedding similar-
ities. For instance, k could be 1, in which case, a matching
label will be propagated to one additional unlabeled pair that
is semantically similar to the pair labeled by the oracle and
has the highest cosine similarity between its constituent node
embeddings. On the other hand, if the pair labeled by the
oracle has a non-matching label, it will be propagated to
the semantically similar pair with the least constituent node
embedding similarity. This mode allows for the most fine-
grained control over the amount of label propagation and
the value of k could be chosen to suit the available human
labeling budget. Note that we set k to 1 in our experiments
for conservative mode. This is because the label propagation
happens for each reference pair labeled by the oracle, i.e., if
20 pairs are labeled by oracle in an AL iteration, conserva-
tive mode infers the labels for 20 more pairs. Propagating to
top-3 or top-5 pairs results in 3× to 5× more labels in each
AL iteration which was empirically found to be aggressive
in nature.

Mode 3: adaptive This mode allows for propagating a
human-provided label adaptively to a varying number of
unlabeled samples in each AL iteration. The key idea is that
label propagation is dependent on the quality of clustering
which is done based on the model-generated embeddings.
In the initial AL iterations, the model is still not mature and
hence label propagation is done less aggressively to avoid
sacrificing accuracy by incorrect label propagation. As the
model becomes more accurate, the clustering is also more
refined and hence the labels are propagated more aggres-
sively without sacrificing on model accuracy. In our current
implementation, we propagate the label of Pairre f to top-k
unlabeled pairs which are semantically similar to Pairref and
are ranked by their constituent node embedding similarities,
but with an additional constraint that k is chosen to be the
numerical value of the current AL iteration. Hence, the adap-
tive mode can be considered as a variant of the conservative
mode with a dynamically changing value of k that reflects
the increasing confidence in the model as it is refined. This
mode adaptively balances the trade-off between the cost of
human labeling and model accuracy.

We provide a detailed empirical evaluation of the above
mentioned trade-off for these modes of label propagation in
Sect. 5.3. By default, we use the conservative mode of label
propagation in our end-to-end evaluation of Alfa. We dis-
cuss how to choose the label propagation mode in Sect. 5.5.

3 Semantically similar means that the constituent nodes have the same
cluster belongingness as the nodes in the labeled pair. Ranking by
node similarity covers the constraint that the constituent node simi-
larity should be larger or smaller than the node similarity of the labeled
pair depending on matching or non-matching label being propagated.
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Algorithm 2 ontoAwareLabelPropagation(Premaining,
Plabeled, Clusters, labelPropMode, iter)
1: Pinferred = {}
2: for i : 0 to |Plabeled| − 1 do
3: Pshortlisted = {}
4: Pairref ← Plabeled[i]
5: candPairs ← genCandidatePairs(Pairref.left.cluster,

Pairref.right.cluster, Pairref)
6: if label PropMode == “unrestricted” then
7: Pshortlisted ← candPairs
8: else if label PropMode == “conservative” then
9: Pshortlisted ← topk(k = 1, candPairs, Pairref)
10: else if label PropMode == “adaptive” then
11: Pshortlisted ← topk(k = i ter , candPairs, Pairref)
12: end if
13: Pshortlisted.label = Pairref.label
14: Pinferred ← Pinferred ∪ Pshortlisted
15: end for
16: return Pinferred

Algorithm 3 genCandidatePairs(lCluster, rCluster, Pairref)
1: candPairs = {}
2: Simref ← cosine_sim(Pairref.left.emb, Pairref.right.emb)
3: for i : 0 to |lCluster.nodes|-1 do
4: for j : 0 to |rCluster.nodes|-1 do
5: Paircand ← (lCluster.nodes[i], rCluster.nodes[ j])
6: if Paircand �= Pairref && Paircand.left.onto �=

Paircand.right.onto then
7: Simcand ← cosine_sim(Paircand.left.emb,

Paircand.right.emb)
8: if (Pairref.label == matching && Simcand ≥ Simref) or

(Pairref.label == nonMatching && Simcand ≤ Simref)
then

9: candPairs ← candPairs ∪ Paircand
10: end if
11: end if
12: end for
13: end for
14: return candPairs

Algorithm 2 describes our proposed ontology-aware label
propagation algorithm. It takes as input a set of remaining
unlabeled node pairs (Premaining), a set of human labeled node
pairs in the current AL iteration (Plabeled), a set of clusters
(Clusters) produced by the ontology clustering algorithm,
the label propagation mode labelPropMode and the numeri-
cal value of the currentAL iteration, i ter . Lines 2 to 15 iterate
over each labeled node pair, Pairre f , and compute the set of
node pairs, Pinferred, to which the label of Pairre f is prop-
agated. Lines 6 to 12 determine which node pairs among
the candidate pairs, candPairs, need to be shortlisted in
each AL iteration as Pshortlisted for inclusion into the final
set of pairs, Pinferred, with propagated labels. If the mode of
label propagation is “unrestricted”, all the candidate pairs are
shortlisted (line 7). In the case of “conservative” mode, the
top-k pairs (where k=1) which are semantically similar to
Pairref and ranked by their constituent embedding similari-
ties are shortlisted (line 8). If the mode is “adaptive”, k is set

to the numerical value of the AL iteration, i ter , and the top-k
pairs are shortlisted (line 9). Line 13 indicates that each pair
among the set of shortlisted pairs, Pshortlisted, gets the same
label as Pref. Line 14 includes Pshortlisted into the set of pairs
with propagated labels, Pinferred which is returned in line 16.

Algorithm3 describes howwe generate the candidate pool
of unlabeled pairs for each reference pair, Pairref. The algo-
rithm takes Pairref and the cluster belongingness of the left
and right nodes within Pairref as input parameters. As men-
tioned before, it is possible that the left and right clusters
are the same. We enumerate each candidate pair, Paircand,
across the clusters and check if the left and right nodes within
Paircand belong to different ontologies (line 6). For each
cross-ontology pair, we propagate the matching and non-
matching labels separately in line 8 based on the embedding
similarities, Simref and Simcand, computed in lines 2 and 7
respectively. We include Paircand into the set of candidate
pairs candPairs in line 9 only if the criteria are met for
Case 1: matching pair and Case 2: non-matching pair as
described earlier. Finally the set of candidate pairs is returned
in line 14.

4.3 Semantic blocking

We propose a semantic blocking technique that prunes away
pairs of schema elements that are unlikely matches based on
their semantic representation. This reduces the search space
of sample selection thereby allowing Alfa to scale to larger
schemas. Additionally, it also reduces label class imbalance
between the matching and non-matching pairs thus enabling
the training of more accurate alignment models efficiently.

Existing techniques for blocking such as those based on
the Jaccard similarity metric [39, 40, 69, 70] are dependent
on pure string matching and are unable to fully capture the
semantic similarity of the schema elements. As a result,
this may lead to a lot of false negatives, namely prun-
ing away a number of matching pairs thereby adversely
affecting model accuracy. To overcome this limitation, we
propose an unsupervised semantic blocking technique which
prunes the obvious non-matching schema elements based on
their semantic representation to reduce the number of false
negatives. This semantic representation is created using pre-
trained language models such as USE [10] or BERT [17] to
transform the schema element properties such as names and
descriptions into fixed size low-dimensional vectors.

In this section, we discuss two variants of USE-based
semantic blocking which we empirically compare against
Jaccard-based andBERT-basedblockingbaselines inSect. 5.4.
BERT-based blocking has been evaluated as a deep learning-
based blocking candidate for entity matching [67] and
recently used by a state-of-the-art ontology alignment system
called BERTMap [27].
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USESim In this variant, we compute the cosine similar-
ity simUSE between the USE embeddings of the schema
elements in each concept pair. If simUSE is lower than a
pre-determined similarity threshold parameter τsim , the pair
is pruned away. Despite parallelizing USESim, it has high
latency as it enumerates the entire search space of all possi-
ble pairs in the Cartesian Product. Therefore, we propose an
efficient blocking variant called USECluster.

USECluster The schema elements in the two input
schemas are clustered based on the Euclidean distance
between these embeddings. The number of clusters is a
parameter that allows the system to achieve a pre-specified
target level of blocking in terms of number of post-blocking
pairs. The blocking algorithm prunes away all the schema
element pairs where the individual elements in the pair lie
across different clusters indicating a semantic mismatch.

Algorithm 4 describes our USESim variant of semantic
blocking which takes as input the two ontologies represent-
ing the schemas OntL , OntR , and the similarity threshold
τsim . Lines 3 to 9 enumerate the entire search space of Carte-
sian Product between the left and right ontologies, OntL and
OntR . For each candidate pair, Pcand, the USE embedding
similarity value, SimUSE, between the constituent nodes is
computed in line 5 and is compared against τsim in line 6.
Line 7 adds the candidate pair Paircand to the set of post-
blocking pairs if it qualifies. Finally, line 10 returns the set
of post-blocking pairs, Premaining.

Algorithm 4 USESim(OntL , OntR , τsim)
1: Pcartesian ← OntL × OntR
2: Premaining = {}, Ont ← OntL ∪ OntR
3: for i : 0 to |Pcartesian|-1 do
4: Paircand ← Pcartesian[i]
5: SimUSE ← cosine_sim(Paircand.left.USE,

Paircand.right.USE)
6: if SimUSE ≥ τsim then
7: Premaining ← Premaining ∪ Paircand
8: end if
9: end for
10: return Premaining

Algorithm 5 describes our USECluster variant of semantic
blockingwhich takes as input the twoontologies representing
the schemas OntL , OntR , and the number of blocking clus-
ters, blockingcluster. In line 2, the algorithm uses K -means
clustering to cluster the schema elements based on their
semantic representation represented in USE embeddings.
Lines 3 to 7 enumerate the clusters. The set of cross-ontology
schema element pairs within each cluster (Pairsi ) is com-
puted in line 5 and is added to the set of post-blocking pairs,
Premaining in line 6. Finally, the set of post-blocking pairs,
Premaining, is returned in line 7.

Algorithm 5 USECluster(OntL , OntR, blockingcluster)
1: Premaining = {}, Ont ← OntL ∪ OntR
2: Clusters ← K -means(Ont , blockingclust, USE)
3: for i : 0 to |Clusters|-1 do
4: cluster ← Clusters[i]
5: Pairsi ← cluster.NodesOntL × cluster.NodesOntR
6: Premaining ← Premaining ∪ Pairsi
7: end for
8: return Premaining

4.4 Putting it all together

Algorithm 6 provides a description of Alfa’s overall func-
tionality and evaluation in terms of the ontology-aware
sample selection, label propagation and semantic blocking
techniques to efficiently utilize the human-labeled samples
to train an effective GNN-based schema alignment model.
Lines 2 and 3 show how test samples and unlabeled (remain-
ing) samples are created from the post-blocking pairs. Lines
1, 7 and 8 show the invocations to our semantic blocking,
sample selection and label propagation, respectively. The
active learning framework is evaluated w.r.t. progressive F1-
scores where the entire set of post-blocking pairs is treated
as a test set. This gets a progressive quality measure for the
model learned incrementally in each active learning itera-
tion and also returns the number of labels required before the
classifier reaches its convergent F1-score.

Algorithm 6Active Learning for OntologyMapping (Alfa)
Require: seed pairs (Pseed), #pairs to label in each iteration

(batchSi ze), left and right ontologies (< OntL , OntR >),
#clusters for sample selection (ncluster), #clusters for blocking
(blockingcluster), label propagationmode (label PropMode), label-
ing budget (budget)

1: PpBlock ← semanticBlocking(OntL , OntR , blockingcluster)
2: Ptest ← PpBlock
3: Premaining ← PpostBlock - Pseed
4: Ptrain ← Pseed, i ter ← 1
5: while |Ptrain| ≤ budget ∧ |Premaining| > 0 do
6: model ← train(Ptrain)
7: Clusters, Psel ← ontoAwareSelection(OntL , OntR ,

Premaining, batchSi ze, model, ncluster)
8: Pprop ← ontoAwareLabelPropagation(Premaining, Psel, Clusters,

labelPropMode, i ter )
9: Psel ← Psel ∪ Pprop
10: Premaining ← Premaining \ Psel
11: Ptrain ← Ptrain ∪ Psel
12: Fscore ← evaluate(model, Ptest), i ter++
13: end while
14: return

4.5 Computational complexity ofALFA

Wediscuss the computational complexity of each component
in Alfa below.
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Ontology-aware sample selection The time complexity
of K -means clustering in each AL iteration is O(I · ncluster ·
|Premaining|·d), where I is the number of K -means iterations
until the convergence of clustering (300 iterations by default
in scikit), ncluster is the number of clusters (20 by default in
Alfa), |Premaining| is the number of remaining pairs and d
is the dimensionality of the RGCNmodel-generated embed-
dings (64 by default in Alfa) in each AL iteration. The
time complexity of computing the label disagreement and
the selection of top-k ambiguous pairs using a max-heap
and a priority queue is O(|Premaining| + k · log(k)). Thus,
the time complexity of ontology-aware sample selection in
Alfa is O(I · ncluster · |Premaining| · d + k · log(k)).

The complexity of sample selection in Alfa is primarily
influenced by the number of post-blocking pairs that implies
that sample selection takes longer time in the initial AL iter-
ations compared to later iterations. Similarly, the number of
clusters and the dimensionality of the embeddings need to be
modest for the fast convergence of clustering, and lead to low
sample selection latencies and user wait times during AL.

Ontology-aware label propagation If batchSize is the
size of an AL batch and |clusterlargest | is the size of the
largest K -means cluster, the time complexity of the selec-
tion of the candidate pairs to which the oracle-assigned
labels can potentially be propagated is O(batchSize ·
|clusterlargest |2). The time complexity of unrestricted mode
is O(batchSize · |clusterlargest |2) and conservative mode
is O(batchSize·(|clusterlargest |2 + k · log(k))), where k is
the top-k elements per Pairre f to which the label is prop-
agated. Lastly, the time complexity of the adaptive mode is
O(batchSize·(|clusterlargest |2 + i ter · log(i ter ))), where
i ter is the numerical value of the AL iteration that is used as
the dynamically changing value of k in the adaptive mode.

An ontology-agnostic algorithm would need to search
through the entire set of post-blocking pairs to identify can-
didate unlabeled pairs for label propagation. Our ontology-
aware propagation has a lower time complexity than an
exhaustive search because its search space is confined to the
candidate set of semantically similar unlabeled pairs across
the ontology clusters that the concepts in a labeled pair belong
to. This is captured by the term |clusterlargest |2 that esti-
mates the search space to be, at most, the size of the Cartesian
Product of concepts within the largest ontology cluster.

Semantic blocking Among the two blocking variants of
Alfadiscussed inSect. 4.3, the complexity of USESim is pro-
portional to the size of the Cartesian product of the number
of pairs across ontologies which can be written as O(|OntL |·
|OntR |). If blockingcluster is the number of blocking clus-
ters, the time complexity of USESim is O(I · blockingcluster
·(|OntL |+|OntR |)·d +

∑blockingcluster
i=1 |clusteri |2)). Here, d

is the dimensionality of the USE embeddings (512 by default
in Alfa) which we feed as input.

While USESim is an exhaustive blocking variant that enu-
merates the entire set of pairs in the Cartesian Product of the
ontology concepts, our USECluster variant is not exhaustive
and enumerates pairs only within the K -means clusters but
not across clusters. Hence, the complexity of USECluster is
quadratic in the sizes of the clusters, but not in the sizes of
the ontologies.

5 Experimental evaluation

In this section, we evaluate the performance of Alfawith
the goal of answering the following questions.

• How effective is our proposed ontology-aware sample
selection technique inAlfa against other state-of-the-art
AL sample selection techniques, in terms of reduction in
the number of labeled samples required to achieve a target
model quality (F1-score) and sample selection latency?

• How do the three modes of ontology-aware label prop-
agation influence the trade-off between the reduction in
human labeling cost and model quality?

• How does semantic blocking influence label skew (class
imbalance) and model quality with varying degrees of
blocking, compared to an existing representative block-
ing technique?

In addition, we also study the effect of varying the number
of ontology clusters during sample selection onmodel quality
and conclude the experiments with an end-to-end evaluation
of Alfa.

5.1 Experimental setup

5.1.1 Datasets

Weuse four real-world datasets listed inTable 1.CMT-CONF
[44] and HUMAN-MOUSE [45] are publicly available
datasets of ontologies from the publication and anatomy
domains respectively. BANK-KAFS is a proprietary dataset
from the finance (banking) domain. FMA-NCI is a dataset
from the large BioMed track of the ontology alignment
evaluation initiative (OAEI) [46]. In addition to the size
of the actual matching pairs (|PairsMatches|) and the total
number of schema element pairs in the Cartesian Prod-
uct (|PairsTotal|), we present the label skew as the ratio
between them to establish the challenge involved in match-
ing the dataset ontologies. The ground truth (actual matching
pairs) for all the datasets is used to simulate human labeling.
Note that the ground truth was curated by Subject Mat-
ter Experts (SMEs) for BANK-KAFS. While we evaluate
Alfa extensively on the first three datasets, i.e., CMT-CONF,
HUMAN-MOUSE andBANK-KAFS,we use the FMA-NCI
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Table 1 Dataset details Dataset |NodesLeft| |NodesRight| |PairsMatches| |PairsTotal| SkewLabel

CMT-CONF 39 77 15 3003 1:200

HUMAN-MOUSE 3298 2737 1516 9 Million 1:5937

BANK-KAFS 2148 7170 394 15.4 Million 1:39,086

FMA-NCI 3720 6488 2686 24.1 Million 1:8986

dataset exclusively for an end-to-end system evaluation of
Alfa against BERTMap [26, 27], which employs pre-trained
and fine-tuned BERT models [3] to align large biomedical
ontologies.

5.1.2 Evaluation metrics

We evaluate Alfa using the following metrics.
Progressive F1-score We evaluate the effect of our pro-

posed AL techniques on model performance in terms of
progressive F1-score [19, 22, 39, 68], a popular metric used
by the AL community. Progressive F1-score is defined as the
evaluation F1-score obtained by using the entire set of candi-
date pairs available for sample selection as the test set [39].
This is used to evaluate sample selection strategies in the
AL and crowdsourcing literature as they progressively query
the oracle for a sample of the available candidate pairs to be
added to the training set in each labeling iteration. Therefore,
progressive F1 is plotted as a function of the number of labels
acquired from the human or the AL iterations.

Sample selection latencyWeuse sample selection latency
to measure the time taken by our sample selection algorithm
to select samples for human labeling.

Label skewWemeasure the performance of our semantic
blocking technique in terms of its effect on label skew (class
imbalance) on the training set as % of positive labels out of
the total set of labels.

Convergent progressive F1 This is the progressive F1-
score that can be achieved by a model during AL upon the
exhaustion of all unlabeled pairs [39]. It is possible that
the convergent progressive F1 is in practice achieved by the
model sooner than AL termination.

5.1.3 Baselines

WecompareAlfa against several different baselines for each
of our proposed AL techniques.

Sample selection baselines We compare the perfor-
mance of our ontology-aware sample selection technique
against several baselines including entropy-based selection
[43, 60], Query by Committee (QBC) [40] and an impor-
tance weighted sampling method called OASIS [38] from
the generic AL literature. From the link prediction literature
[6], we include degree-based and centrality-based selection

with andwithout stratification. The implementation details of
the baselines are in Appendix A.1. We also include a random
sample selection baseline which randomly selects samples
for labeling from the available set of candidate pairs.

Label propagation We compare the effect of the dif-
ferent modes (unrestricted, conservative and adaptive) of
our proposed ontology-aware label propagation against two
baselines that use pre-trained language models, USE [10]
and BERT [17]. While BERT-based propagation is bor-
rowed from BERTMap, USE-based propagation performs
an exhaustive search over the entire search space of post-
blocking pairs to identify pairs to which labels can be
propagated. USE-based label propagation propagates the
label of amatching or non-matching reference pair (Pairre f )
to unlabeled pairs with similar cosine similarities between
the USE embeddings of their constituent schema elements.
BERTMap uses pre-trained and fine-tuned BERT models in
unsupervised and semi-supervised modes respectively for
ontology alignment [27]. BERTMap’s propagation hierar-
chically propagates a label from a concept pair to its parent
and child pairs in the ontology graph thus leveraging the
structural information besides the language model. We also
compare Alfa against the vanilla baseline of sample selec-
tion with no label propagation.

Semantic blockingWe also compare our semantic block-
ing variants (USESim and USECluster) against three base-
lines, (1) Jaccard similarity-based blocking that has been
extensively used for entity matching [39, 40, 69, 70], (2)
BERTMap’s candidate selection heuristic that builds a word-
level inverted index using BERT’s WordPiece tokenizer [27]
and reduces the search space to a shortlisted set of con-
cept pairs with overlapping sub-words, and (3) exact nearest
neighbor search based on L2-Flat index implemented in the
FAISS [31, 49] library. We first train a flat index on all con-
cepts from one of the ontologies which can be referred to as
the base ontology, i.e., CONF from CMT-CONF, MOUSE
fromHUMAN-MOUSE and KAFS from BANK-KAFS.We
then probe the base ontology to find the top-k closest base
concepts for each concept from the probe ontology (CMT,
HUMAN and BANK being the probe ontologies) to find
the nearest (probe, base) concept pairs in the L2-distance
space. In order to arrive at a pre-determined target number of
post-blocking pairs, we adjust the value of “k” for top-k near-
est neighbor detection. Although L2-flat index detects exact
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nearest neighbors, FAISS optimizes the exhaustive search
using C++ vector operations, thus avoiding the need to par-
allelize the search.

End-to-endevaluationWeevaluate our end-to-end imple-
mentation of Alfa against BERTMap as it was shown to
outperform rule-based ontology alignment baselines such as
AML [18, 71] and LogMap [13, 30] which require a signifi-
cant amount of manual assistance. Although BERTMap does
not use active learning, it has a similar three-part architecture
as Alfa comprising a blocker, matcher and label propagator
and can function in both unsupervised and semi-supervised
modes without and with BERT fine-tuning. In our compari-
son of Alfa against both the variants, we allow BERTMap
to utilize GPUs (Alfa does not use GPUs while training)
and also access batches of matching and non-matching pairs
to fine-tune the BERT model in each AL iteration for a fair
comparison.

5.1.4 Configurations and settings

Weconducted our experiments on amachinewith 2.3GHz 8-
Core Intel Core i9 processor, 64GB RAM, an AMD Radeon
Pro 5500M8GBGPUand an IntelUHDGraphics 630 (GT2)
GPU with 24 execution units running MacOS. We imple-
mented Alfa using Python 3.9.5. We used PyTorch 1.8.1 as
the deep learning platform for the implementation of a GNN-
based schema alignment [25].We used scikit-learn 0.24.2 for
implementing K-means clustering. Other generic parameter
settings for Alfa are described below.

Model parameters We use the RGCN model from
Sect. 3.3 with a learning rate of 0.001, 100 epochs, MLP of
one hidden layer, ReLU activation taking 512-dimensional
USE embeddings as input to output 64-dimensional embed-
dings and a classification label.

Seed label set The seed label set is the initial set of labeled
pairs used to train the model, which is typically 0.1–0.3% of
the entire unlabeled set [39]. The actual sizes of the seed label
sets are between 5 and 40 across all our datasets.

Batch size In all our experiments, the #pairs selected in
each AL batch is 1.27% of the entire unlabeled set. This
parameter value was arrived at empirically to control the
number of AL iterations (80) and thereby keep the overall
runtime to less than 1h upon larger datasets like BANK-
KAFS. In actual practice, the batch size would be dependent
on the number of samples a human would prefer to provide
labels for, in each iteration.

Termination criterion AL iterations could be terminated
either when the labeling budget is exhausted or the desired
model quality is achieved. In the current implementation, we
terminate AL after consuming all the unlabeled data. The
human-in-the-loop for labeling is simulated via the available
ground truth of matches between the two schemas.

5.2 Evaluation of ontology-aware sample selection

Figures 6 and 7 show that ontology-aware sample selection
outperforms generic and link prediction AL baselines w.r.t.
prediction quality (progressive F1). We use the entire Carte-
sian Product of 3003 concept pairs for CMT-CONF, while
we reduce the 9M and 15M concept pairs from HUMAN-
MOUSE and BANK-KAFS respectively to ∼15K candidate
pairs by employing negative sampling from a recent work
[53] in the ratio 1:9 and 1:39. This samples hard-to-classify
negative pairs from the Cartesian Product. We use 20 as
the default number of clusters in Alfa(20C), while also
including results for 800 clusters on the larger datasets
(Alfa(800C)). We use OASIS(20C) and OASIS(800C) as
the stratified importance sampling baselines with 20 and 800
strata and QBC-2 with 2 classifiers in the committee. Larger
committees such as QBC-10 incur prohibitively long laten-
cies without a significant boost in F1-scores.

Overall, the number of labels required by the best-
performing variants of Alfa to achieve a 90% progressive
F1-score is 18% (CMT-CONF), 48% (BANK-KAFS) and
73% (HUMAN-MOUSE) of the size of the corresponding
set of unlabeled pairs. Compared to Alfa, the next best per-
forming baselines are QBC-2 with a committee of 2 learners
and entropy which require 64% of the unlabeled pairs for
both CMT-CONF & BANK-KAFS and 92% for HUMAN-
MOUSE. Although OASIS is comparable to QBC-2 and
entropy on HUMAN-MOUSE, it performs worse than ran-
dom sampling on CMT-CONF and BANK-KAFS because,
OASIS draws samples at random from the most importantly
weighted stratum that explains its fluctuating behavior.

Figure 8 shows the performance of our ontology-aware
sample selection technique against the generic AL base-
lines in terms of sample selection latency. As can be seen,
our proposed technique incurs reasonably low latency that
is comparable to OASIS and the entropy-based selection
baseline. QBC with 2 classifiers (QBC-2) is the most expen-
sive because of training a committee of classifiers in each
AL iteration. As expected, random sample selection is the
fastest w.r.t. latency but it also yields the lowest F1 scores
(Fig. 6).Alfa(800C) using 800 clusters performs better than
Alfa(20C) using 20 clusters in terms of F1-scores (Fig. 6)
but it also incurs longer sample selection latencies.

Figure 9 shows the latency comparisons with the graph-
aware link prediction baselines which also use 20 clusters.
We notice that on the CMT-CONF dataset (Fig. 9a), Alfa
incurs more latency than the link prediction baselines. How-
ever, on the larger datasets such as HUMAN-MOUSE and
BANK-KAFS (shown in Fig. 9b, c), the latency of the strat-
ified variants of the link prediction baselines are typically
up to 10× higher than their non-stratified counterparts, and
our proposed ontology-aware selection in Alfa is 10×-
17× faster than the stratified graph-aware link prediction
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Fig. 6 Ontology-aware sample selection in Alfa versus generic AL baselines w.r.t. progressive F1

Fig. 7 Ontology-aware sample selection in Alfa versus link prediction baselines w.r.t. progressive F1

Fig. 8 Ontology-aware sample selection in Alfa versus generic AL baselines w.r.t. latency

baselines. This is because stratified link prediction baselines
detect pairs having top-k degree or centrality sumwithin each
cluster which can take longer than detecting the top-k pairs
globally using their non-stratified counterparts. However, on
smaller datasets like CMT-CONF, the individual clusters are
smaller, which reduces the latency difference between the

stratified and non-stratified variants while also making them
faster than Alfa.

Varying the number of clusters
In Fig. 10, we vary the number of clusters from (5 to 100)

for CMT-CONF and 20 to 800 for HUMAN-MOUSE and
BANK-KAFS keeping the sizes of the unlabeled pairs in
these datasets in perspective.We notice that while fewer than
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Fig. 9 Ontology-aware sample selection in Alfa versus link prediction baselines w.r.t. latency

Fig. 10 Varying the number of ontology clusters during ontology-aware sample selection in Alfa

20 clusters lead to a slower convergence to the best possible
F1-score, increasing the number of clusters beyond 20 does
not bring any significant benefit in convergence speed on the
CMT-CONF dataset. On similar lines, 500 clusters for the
HUMAN-MOUSE dataset and 800 clusters for the BANK-
KAFS dataset are enough to quickly converge to the best
possible F1-scores. This indicates the need to use a larger
number of clusters as schema size increases, and a require-
ment to empirically determine the value of #clusters beyond
which there is no substantial gain in model quality (F1). We
empirically showed the influence of #clusters on the sample
selectionmodule evaluated in isolation inFig. 10. InSect. 5.5,
wewill discuss how the number of clusters influences sample
selection in the end-to-end implementation of Alfa. In order
to automatically determine the value of #clusters beyond
which there is no substantial gain inmodel quality, we imple-
ment the ELBOW method [61] using Silhouette-coefficient
[56].

5.3 Evaluation of ontology-aware label propagation

We evaluate our ontology-based label propagation tech-
nique in terms of its influence on the trade-off between the
reduction in human labeling cost and model quality. We do

so by two sets of experiments. Figure11 shows the first
set of experiments capturing the variation of the progres-
sive F1-score with respect to the number of AL iterations.
The three modes of label propagation in Alfa are com-
pared against the label propagation baselines discussed in
Sect. 5.1.3 when each of them is plugged into Alfa. Among
the compared methods, USE-based propagation baseline
aggressively exhausts all the unlabeled data in fewestAL iter-
ations and achieves the lowest progressive F1-score. On the
other extreme, BERTMap propagates labels conservatively
only to the parent and child pairs and achieves the closest
progressive F1-score to the baseline that uses no label prop-
agation. The three modes of label propagation in Alfa are
flanked by these two extremes while balancing the trade-off
between the two dimensions that determine optimality i.e.,
convergent F1 score and the labeling cost reduction.

Among the three label propagation modes of Alfa, we
can notice that unrestricted label propagation exhausts the
labels quickly and achieves lower convergent F1-score than
the conservative mode. While this pattern is consistent on all
the datasets, the distinction between unrestricted and adap-
tive modes is not pronounced in Fig. 11a. This is because
CMT-CONF is a smaller ontology with fewer candidates
which qualify for label propagation. BERTMap’s hierarchi-
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Fig. 11 Evaluation of various degrees of label propagation in Alfa on convergent progressive F1-score

Fig. 12 Trade-off between convergent progressive F1-score and fraction of propagated labels in Alfa

cal propagation performs poorly on CMT-CONF because
of incorrectly propagating labels to dissimilar parent and
child pairs. BERTMap’s convergent F1-score is higher on
HUMAN-MOUSE and BANK-KAFS but the extent of label
propagation is very limited.

Figure 12 contains the second set of experimental results
where we show the trade-off between the reduction in the
human cost of labeling and the convergent progressive F1-
score achieved by all the approaches for label propagation
across three datasets. For each label propagation technique,
we show the fraction of propagated labels, i.e., the percentage
of the number of unlabeled pairs obtaining labels from label
propagation instead of a human oracle. This fraction of con-
cept pairs indicates the savings obtained by not consulting
the human oracle for their labels.

Figure 12 shows thatUSE-basedpropagation andBERTMap
yield the best performance only on one of the dimensions
either with the highest convergent F1 or the highest amount
of label propagation while performing the worst on the other
dimension.Alfa, on the other hand, is found to performwell
on both quality (convergent F1-score) and savings in labeling
cost (fraction of propagated labels), and it gives the flexibil-
ity to choose one of unrestricted, conservative or adaptive
modes depending on the end user preference.

The unrestricted mode of label propagation provides a
significant reduction in the cost of human labeling (∼80%
across all the datasets) while achieving a relatively lower F1-

score than the other two modes in Alfa. On the other hand,
the conservative mode of label propagation achieves a low
amount of reduction in the cost of human labeling (∼45%
across all datasets)while achieving high F1-scores.We found
that the fraction of correctly propagated labels across both
matching and non-matching pairs is ∼97% for all the three
modes of label propagation in Alfa averaged across all the
datasets. However, the fraction of matching labels correctly
propagated is ∼25% for unrestricted, ∼36% for conserva-
tive and ∼39% for adaptive modes across all datasets. This
decline in label propagation accuracy for matching pairs is
due to label skew.

Table 2 shows the breakdown of the label propagation
quality exclusively based on inferred labels. In terms of the
time complexity, BERTMap has the least propagation com-
plexity of O(1) because it takes constant time to propagate
a label from a concept to its immediate parents or chil-
dren in the ontology. This is also reflected in the average
inference latency shown for each active learning iteration.
Note that the batch size of samples in each AL iteration
over which label propagation is done is the same for all the
compared approaches. BERTMap achieves the best inferred
F1-score on HUMAN-MOUSE and BANK-KAFS datasets
but its hierarchical propagation is conservative w.r.t. the
number of pairs to which labels are propagated. Hence
it saves the least on labeling budget. USE-based prop-
agation, on the other hand, has high inferred F1-scores
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on HUMAN-MOUSE and BANK-KAFS despite propagat-
ing labels to several pairs. The reason is that USE-based
propagation performs an exhaustive search over all unla-
beled pairs to select candidates to which labels can be
propagated. The time complexity of USE-based exhaustive
search is O(batchSize.|OntL |.|OntR |) without blocking,
and O(batchSize.|Ppost Blocking|) when applied on post-
blocking pairs. USE incurs the longest inference latency on
all the datasets.

In contrast to the costly brute-force search in USE-based
propagation for inferred pairs, ALFA’s label propagation
complexity is O(batchSize.|clusterlargest |2) which is sig-
nificantly lower because its search space is limited to the
candidate pairs across the clusters to which the concepts
of a labeled pair belong. Hence, the conservative mode of
Alfa is up to 50× faster than USE on inference latency. The
search within a limited space of candidate pairs explains the
lower F1-scores for Alfa but also underlines the importance
of using ontology-aware mechanisms to optimize the search
for inferred pairs.Alfa’s conservativemode achieves a com-
petitive inferred F1-score of 84% onHUMAN-MOUSE only
next to USE, and a perfect inferred F1-score of 1.0 on CMT-
CONF. As per complexity analysis in Sect. 4.5, adaptive
mode is supposed to take the longest inference latency among
the three label propagation modes of Alfa, but Table 2
shows that conservative mode incurs the longest latency.
This is due to the variable cluster sizes that are encoun-
tered over several AL iterations by conservative mode,
whereas adaptive and unrestricted modes terminate earlier
after fewerAL iterations.Although the sizes of sampled unla-
beled pairs are roughly the same for both BANK-KAFS and
HUMAN-MOUSE, we observed a longer inference latency
on HUMAN-MOUSE for Alfa because the cluster sizes
are more skewed in HUMAN-MOUSE compared to BANK-
KAFS.

Table 2 also shows that the overall F1-score for USE is
consistently low although the inferred F1-score is high. This
is due to the aggressive propagation in USE which exhausts
all the labels in the first few iterations and terminates active
learning without the GNNmodel maturing enough. Training
the GNN model with more epochs or layers may help com-
bat label skew and improve training accuracy while training
upon a large number of inferred labels in a single active learn-
ing iteration. However, it is unsuitable for human-in-the-loop
active learning as using a heavyweight model further leads
to longer user wait time and training latency. We used the
entire CMT-CONF dataset which has a skew of 1:200 and
employed negative sampling at 1:9 on HUMAN-MOUSE
and 1:39 on BANK-KAFS same as Sect. 5.2.

In principle, we could improve the overall F1-score of the
USE-based propagation method by spreading the inferred
labels across multiple smaller AL batches, allowing the
model to train over several AL iterations. In addition, one

could implement approximate binary search variants of label
propagation for both USE and Alfa to further improve
the search efficiency. The single-threaded average inference
latency shown in Table 2 can be reduced by parallelizing
propagation using multi-threading for all the approaches.
These optimization opportunities in Alfa’s label propaga-
tion are left for future work.

Overall, we recommend using Alfa’s conservative prop-
agation if there are several post-blocking pairs. In case that
the post-blocking pairs are few and an exhaustive search is
affordable, Alfa can interchangeably use its conservative
mode or a conservative implementation of USE-based prop-
agation. On the other hand, if the user wants to trade labeling
savings for F1-score, and there is an oracle willing to label
several pairs, we recommend using BERTMap’s hierarchical
propagation.

5.4 Evaluation of semantic blocking

Blocking is a pruning technique that aims to filter the obvi-
ous non-matching pairs (i.e., the negative labels) and reduce
the label skew. Blocking cannot influence false positives or
true positives as every pair that is not pruned away by block-
ing is not guaranteed to be match. It can only incur false
negatives by incorrectly pruning the matching pairs. There-
fore, we evaluate our proposed semantic blocking in terms
of the trade-off between the reduction in quality of the model
due to false negatives resulting from blocking, and the reduc-
tion in label skew in terms of improvement in the percentage
of positive (matching) labels.

Figure 13 shows this trade-off between the percentage of
positive labels and false negatives (FNs) while increasing
the percentage of blocking clusters. We also plot recall (as
a percentage) in the figure to show that the increase in false
negatives symmetrically leads to a drop in recall. For unifor-
mity across datasets, we represent the number of blocking
clusters as a percentage of the total number of distinct con-
cept nodes across the two ontologies. For example, if we
use 200 clusters upon a pair of ontologies containing a total
of 1,000 concepts, we denote this setting as 20% blocking
clusters. The reason for using %blocking clusters is to be
scale-invariant across datasets by avoiding absolute values.
We can observe that the slope of the percentage of positive
labels (or the rate at which label skew decreases) is higher
than that of FNs thereby showing that the benefits of our
semantic blocking outweigh the penalty that it pays in terms
of FNs.

Table 3 compares our proposed semantic blocking vari-
ants, USESim and USECluster, against Jaccard similarity
based blocking and BERTMap’s inverted index-based block-
ing baselines. We obtained several candidate entries for
post-blocking pairs in Table 3 by varying the similarity
thresholds for Jaccard similarity-based blocking between
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Fig. 13 Trade-off between false negatives (recall) % and positive labels % for various degrees of blocking in Alfa

Fig. 14 Evaluation of sample selection at various degrees of blocking in Alfa

0.001 and 0.8. We imposed an additional constraint that the
minimum number of post-blocking pairs should have at least
one positive sample in them. We thus obtain a minimum of 9
post-blocking pairs for CMT-CONF (at a similarity threshold
of 0.4) and ∼200 for HUMAN-MOUSE and BANK-KAFS
datasets at maximum thresholds of 0.6 and 0.8, respectively.
The parameters of the remaining blocking approaches are
adjusted to reach the target number of post-blocking pairs
obtained using the Jaccard threshold for each row in the table.
N/A entries in the table indicate that no suitable parameter
settings are found for the corresponding blocking approaches
to reach the pre-specified target pairs when they are typically
very few.

Since Jaccard similarity computes the fraction of match-
ing words for a pair of concepts, the correlation between the
similarity thresholds used, and the target post-blocking pairs
obtained is based on the number of words in the concept
names and the total number of concept pairs to be matched
in each dataset. Jaccard similarity influences the variation in
the post-blocking pairs in a step-wise manner and the dis-
tribution of post-blocking pairs across thresholds is skewed.
For some intervals such as [0.001–0.01], varying the thresh-
oldswould not change the number of post-blocking pairs, and
there would be an abrupt reduction in the post-blocking pairs
when a slightly higher threshold like 0.1 is used. Due to this
step-wise behavior, not all possible fractions (percentages)
of the Cartesian Product can serve as target post-blocking

pairs. This is because several of those candidates may not be
reachable by all the blocking methods. Therefore, we used
Jaccard similarity thresholds that can lead to the generation
of distinct candidate values of post-blocking pairs in Table 3.

From Table 3, we can observe that the USESim block-
ing variant of Alfa outperforms the baselines on CMT-
CONF and BANK-KAFS datasets with an exception that
BERTMap’s inverted index-based blocking performs the
best on HUMAN-MOUSE dataset. This is because the con-
cept names in HUMAN-MOUSE generally contain several
sub-words which were captured effectively by the inverted
index. FAISS’s L2-flat index performs an exhaustive search
for the nearest neighbors similarly to USESim and hence
incurs comparable %False Negatives as USESim on all the
datasets. Although we do not evaluate other approximate
nearest neighbor search methods such as IVF, HNSW from
the FAISS library, we refer the reader to Papadakis et al. [48]
for an extensive study on how nearest neighbor approaches
can be tuned for blocking purposes.

Jaccard-based blocking baseline performedpoorly inmost
cases including the HUMAN-MOUSE dataset. This explains
that a naive implementation of word similarity using Jaccard
metric cannot capture the word importance as effectively as
BERTMapdoes through its inverse document frequencymet-
ric or an advanced language model such as USE. USECluster
serves as an approximation to the USESim variant of Alfa
which is also reflected in the percentage of false nega-
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tives on the CMT-CONF and HUMAN-MOUSE datasets.
On the BANK-KAFS dataset, when the target number of
post-blocking pairs is high, USECluster uses fewer clusters
which do not effectively capture the proximity among the
pairs. USECluster is more effective when several clusters are
used to obtain fewer target post-blocking pairs. Among all
the blocking approaches, Jaccard similarity-based blocking
and USESim blocking approaches are parallelized using 48
threads as they enumerate the entire Cartesian Product and
they are still ∼15× slower than USECluster, BERTMap and
the L2 flat index [49] in FAISS on an average across all the
datasets. Although FAISS performs an exhaustive search, it
is faster than USESim because of the way the vector opera-
tions are optimized in the C++ implementation of the FAISS
library. Note that our USESim and USECluster are natively
implemented in Python. We use USECluster as the default
blocking mechanism in Alfa which can be interchangeably
used with FAISS.

Finally, Fig. 14 shows the effect of blocking on model
quality. We plot the variation of the progressive F1-score for
different sample selection techniques upon the CMT-CONF
dataset for different degrees of blocking.WeuseCMT-CONF
dataset for this experiment as it has only ∼3K pairs in total,
and it is possible to train a competent, lightweight (i.e., with
limited number of layers and few training epochs) classifier
with the default AL batch sizes in a few AL iterations even
under the presence of label skew. On the remaining datasets,
at low blocking degrees, the label skew coupled with the size
of the dataset prevents our GNN model from successfully
converging to a low training loss.

The results as expected, show that the higher the degree
of blocking, the poorer is the model performance.Alfa does
better than all the baselines in terms of model quality (Pro-
gressive F1-score) for blocking up to 30% which can be
attributed to the fewer false negatives incurred by seman-
tic blocking as compared to the other techniques. Blocking
beyond 30% blocking clusters (the number of clusters are
plotted as a percentage of distinct nodes as explained ear-
lier), leads to poorer performance in terms of model quality
with no significant difference among various sample selec-
tors. This can be attributed to the increase in false negatives as
we increase the degree of blocking. The reduction in skew is
from1:200 to 1:5 for CMT-CONF i.e., a 40× improvement in
label skew is observed without significantly affecting model
quality. This factor of improvement in label skew also holds
for the remaining datasets.

Our observation in Fig. 14 is consistent with our claim that
there are few false negatives at low blocking degrees where
if a model can successfully be trained to completion, ends
up getting a high convergent F1-score. At higher blocking
degrees, the convergent F1-score drops for the model regard-
less of the example selector used, due to a large number of
false negatives.

Fig. 15 ELBOW: detect #clusters for sample selection

Fig. 16 ELBOW: detect #clusters for blocking

5.5 ALFA: end-to-end system evaluation

Having evaluated our sample selection, label propagation
and blocking techniques, we now provide a brief summary
on the usability of Alfa in terms of the different parameter
settings and their effects on Alfa’s performance.

Choosing number of clusters. Ontology clustering is a
critical step for both sample selection and label propaga-
tion in Alfa. In the real deployment of Alfa, automatically
choosing the optimal number of clusters can be done using
ELBOW method [61] and Silhouette-coefficient [56]. Auto-
matic detection of the optimal number of clusters is crucial
for sample selection in Alfa, as the disagreement between
the clustering and classification (GNN) models happens in
each active learning iteration and determines the quality of
samples selected for human labeling.

Silhouette coefficient [59] is defined as (b−a)
max(a,b) where

“a” is the mean intra-cluster distance and “b” is the mean
inter-cluster distance for each point in a cluster, and the
mean silhouette coefficient is computed over the points in
all clusters. We used silhouette_score implemented in the
scikit-learn library [59] with its default parameter settings.
Silhouette coefficient lies between −1 and 1 where nega-
tive values indicate that the points are incorrectly clustered,
0 indicates overlapping clusters, and 1 indicates the best
possible clustering. Intuitively, silhouette coefficient rewards
clusters with high inter-cluster distance and low intra-cluster
distance. ELBOWcurve plots a cluster goodness metric such
as silhouette coefficient at various values of #clusters and
picks a value resembling an elbow joint in the curve, beyond

123



1004 V. V. Meduri et al.

Ta
bl
e
4

E
nd
-t
o-
en
d
ev
al
ua
tio

n
br
ea
kd
ow

n
of

A
lf
a
(d
ef
au
lt
an
d
E
L
B
O
W

va
ri
an
ts
)
vs
.B

E
R
T
M
ap

D
at
as
et

#P
B
Pa
ir
s

%
Fa
ls
e
ne
ga
tiv

es
(b
lo
ck
in
g)

%
In
fe
rr
ed

la
be
ls
(l
ab
el
pr
op
ag
at
io
n)

O
ve
ra
ll
co
nv
er
ge
nt

F1
-s
co
re

A
L
FA

(E
L
B
O
W
)

B
E
R
T
M
ap

A
L
FA

A
L
FA

(E
L
B
O
W
)

B
E
R
T
M
ap

A
L
FA

A
L
FA

(E
L
B
O
W
)

B
E
R
T
M
ap

B
E
R
T
M
ap

(F
T
)

D
1

46
26
.7

42
.8

2.
3

18
.6

4.
4

0.
85

0.
82

0.
2

0.
75

D
2

3.
2K

23
.9

22
.4

40
.4

8.
5

3.
9

0.
81

0.
85

0.
49

0.
81

D
3

6.
9K

39
.3

61
.3

44
.6

19
.3

0.
3

0.
55

0.
68

0.
01

0.
55

D
4

6.
4K

53
.8

67
.9

42
.8

16
.8

0.
5

0.
52

0.
58

0.
01

0.
48

D
1—

C
M
T-
C
O
N
F,
D
2—

H
U
M
A
N
-M

O
U
SE

,D
3—

B
A
N
K
-K

A
FS

,D
4—

FM
A
-N

C
I,
#P

B
pa
ir
s—

po
st
-b
lo
ck
in
g
pa
ir
s

T
he

co
lo
r
gr
ee
n
in
di
ca
te
s
be
st
sc
or
es

an
d
co
lo
r
re
d
in
di
ca
te
s
po
or

sc
or
es

123



Alfa: active learning for graph neural network-based semantic schema alignment 1005

Fig. 17 End-to-end evaluation of Alfa versus unsupervised and fine-tuned variants of BERTMap (F1-score)

Fig. 18 End-to-end evaluation of Alfa versus unsupervised and fine-tuned variants of BERTMap (latency)

which the cluster goodness does not improve significantly.
The number of clusters at the elbow point in the curve is used
as the optimal number of clusters.

In the end-to-end evaluation of Alfa, we ran ELBOW
by clustering the post-blocking pairs on their USE embed-
dings. Besides the datasets we already have, we also chose
the FMA-NCI biomedical dataset used by BERTMap (see
Table 1 for dataset details) for this evaluation. Figure15a
shows #clusters on X-axis and the silhouette coefficient on
theY-axis.We plotted #clusters at uniform intervals on theX-
axis irrespective of their numerical values to show the effect
of using fewer clusters clearly in the charts.

From Fig. 15a, we observe that the silhouette score is
always above 0 (note that it can range from −1 to 1) which
emphasizes that our clustering is generally good without any
overlapping clusters or incorrect clustering. On the flipside,
we had multiple candidates for the elbow point while plot-
ting silhouette coefficient and could not find a decisive elbow
point in Fig. 15a. We therefore plotted the inverse silhouette
coefficient in Fig. 15b which clearly gave us 10 clusters for
CMT-CONF and 500 clusters as the elbow points for the
larger datasets.

Choosing the mode of label propagation The choice of
the mode of label propagation depends on the actual cost
of human labeling and the available labeling budget. While
unrestricted mode of label propagation can be used for max-
imum reduction in human labeling, it comes at the cost of
lower model quality. The conservative mode allows a fine
grained control over the amount of label propagation and

should be a suitable choice in most cases based on available
budget for human labeling.

Choosing the degree of blocking If the criterion is
avoiding false negatives, a conservative blocking setting is
preferred. On the other hand, if the end user has limited
resources and time to train a model, we need to reduce label
skew in a dataset. In such cases, we recommend selecting
a high blocking degree by trading false negatives for label
skew reduction on larger datasets. As we have mentioned in
Sect. 5.4, active learning demands the usage of lightweight
models that benefit from a high blocking degree by achieving
convergence to low training loss.

Following our discussion in Sect. 5.4, we represent the
number of blocking clusters as the percentage of distinct
nodes for uniformity across datasets. We have used this nota-
tion earlier in Figs. 13 and 14. Figure16 shows how ELBOW
is applied to auto-detect #blocking clusters. Note that this is
a different evaluation from the detection of #clusters using
ELBOW for sample selection shown in Fig. 15. Here, we
show how ELBOW can be applied to the entire set of con-
cept pairs exhaustively enumerated in the Cartesian Product
between the ontologies.

In Fig. 16a, we do not observe a decisive ELBOW point
using silhouette coefficient. Therefore, we plot the inverse
silhouette coefficient in Fig. 16b which shows that elbow
points exist at 10% and 50% for CMT-CONF and at 20%
and 40% clusters for HUMAN-MOUSE. Using 50% clus-
ters for CMT-CONF and 40% clusters is preferred as they
are the closest points to convergence. Another important cri-
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terion while choosing an elbow point for blocking is that
BERTMap’s inverted index-based blocking should be able
to generate an equivalent number of post-blocking pairs to
Alfa. Although we have elbow points at both 20% and 40%
for BANK-KAFS, we choose 20% as the final elbow point
because beyond that setting, there is no support for equiv-
alent blocking in BERTMap. In the case of FMA-NCI, we
choose 30% as the elbow point.

Comparison with BERTMap We evaluate the end-to-
end implementation of Alfa against the unsupervised and
fine-tuned (FT) variants of BERTMap. We compare our
default implementation of Alfa that uses 20 clusters for
sample selection against Alfa (ELBOW) which uses the
automatically discovered ELBOW points of 10 clusters
for CMT-CONF and 500 clusters for HUMAN-MOUSE,
BANK-KAFS and FMA-NCI.We use the conservativemode
of label propagation as the default settings of Alfa. We
use the default parameter settings from [26] for BERTMap.
Note that we fine-tune BERTMap-FT using the accurate
oracle-provided labels in each AL iteration instead of relying
on weak labeling heuristics such as synonym and antonym
detection. Since we re-purpose the inverted index-based neg-
ative sampler in BERTMap for blocking, we include the
blocking penalty for both BERTMap and Alfa in the con-
vergent F1-scores reported in Table 4.

Corresponding to the ELBOW points detected in Fig. 16,
we set equivalent blocking degrees for both Alfa and
BERTMap to obtain the same number of post-blocking pairs
for all the approaches compared inTable 4. Table 4 shows that
blocking in BERTMap incurs a higher percentage of False
Negatives and label skew (of 1:4, 1:2, 1:54 and 1:6) than that
of Alfawhose skew is 1:3, 1:2, 1:36 and 1:4 respectively on
CMT-CONF, HUMAN-MOUSE, BANK-KAFS and FMA-
NCI. Figure17 shows that unsupervised BERTMap using
pre-trainedBERTmodel does not improvewithmoreAL iter-
ations unlikeBERTMap-FTwhich is iterativelyfine-tunedon
labeled pairs.

Although both the default implementation of Alfa and
BERTMap-FT have similar convergent F1-scores, Alfa
requires half of the AL iterations as BERTMap-FT to con-
vergence because of its effective label propagation (see the
percentage of inferred labels in Table 4). Note that the results
shown in Fig. 17 and Table 4 are on the same labeling bud-
get for both systems. Despite utilizing GPUs, BERTMap-FT
incurs at least 10× longer training and inference latencies
which render it less effective for the AL setting than Alfa
(see Fig. 18). This is because pre-trained language models
like BERT need rigorous training to be fine-tuned effectively
that also causes them to run out of the limitedCUDAmemory
onGPUs.BERTMapuses smallermini-batches of 50 training
exampleswhichovercomes thememory issuebut slowsdown
training. Ifwe reduce the training time budget forBERTMap-
FT, we cannot fine-tune it and it will perform as poorly as its

unsupervised variant. Although Alfa achieves over 80% F1
onCMT-CONFandHUMAN-MOUSE, its lower convergent
F1 of 55% and 52% on BANK-KAFS and FMA-NCI are due
to 39.3% and 53.8% False Negatives from the high degree
of blocking. Alfa’s convergent F1-scores prior to applying
blocking penalty on these two datasets were 72% and 82%
respectively.

Table 4 shows that Alfa (ELBOW) achieves the highest
convergent F1-score on all the larger datasets—HUMAN-
MOUSE, BANK-KAFS and FMA-NCI. The reason for this
is the larger number of clusters (i.e., 500) auto-detected by
Alfa (ELBOW) as compared to the default implementa-
tion of Alfa that uses 20 clusters. On CMT-CONF, Alfa
(ELBOW) uses 10 clusters which leads to a slight drop in F1-
score than Alfa. Another interesting observation is that the
number of labels propagated is higher for Alfa (ELBOW)
than Alfa on CMT-CONF, and is lesser on larger datasets.
This observation emphasizes the importance of the number of
clusters, and how it symmetrically influences the percentage
of inferred labels during label propagation and the overall
convergent F1-score. Using fewer clusters leads to higher
label propagation and lower convergent F1-score compared
to using more clusters.

We can also observe fromFig. 17b–d thatAlfa (ELBOW)
sustains for more AL iterations than Alfa due to its reduced
extent of label propagation. This further establishes the trade-
off inherent in label propagation between the savings in
labeling by an oracle and the convergent F1-score attained.
We can also notice that Alfa (ELBOW) incurs longer over-
all latency than Alfa in Fig. 18b–d due to the larger number
of clusters and longer clustering latency in each active learn-
ing iteration. On the other hand, Alfa (ELBOW) uses fewer
clusters than Alfa on CMT-CONF which leads to its lower
overall latency in Fig. 18a, and a slightly earlier termination
in Fig. 17a owing to a higher percentage of inferred labels
observed in Table 4 on that dataset.

6 Conclusions

In this work, we propose Alfa, a GNN-based AL frame-
work for semantic schema alignment. Alfa addresses the
limitations of existing AL techniques by exploiting the rich
semantic information in the underlying schemas captured as
ontologies. We present ontology-aware techniques for sam-
ple selection, label propagation and semantic blocking. We
have provided an extensive evaluation of Alfa over three
real-world datasets while comparing its performance with
several state-of-the-art AL baselines. We show that exploit-
ing the rich semantics in the underlying schema substantially
reduces the cost of human labeling of training data (27–82%)
as compared to other AL techniques. Our ontology-aware
sample selector in Alfa achieves this cost reduction while
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maintaining low sample selection times (in the order of a few
seconds) and comparable schemamatching quality (90%F1-
score) to models trained on the entire set of available training
data. Our end-to-end system evaluation shows the individual
effectiveness of each standalone component in Alfa over
a state-of-the-art ontology alignment solution, BERTMap,
while also surpassing the latter on the speed of convergence
to the best possible F1-score and overall latency.

A Appendix

In the appendix, we provide implementation details forAlfa
baselines as well as describe the content made available on
our GitHub repository [1] that facilitates the reproducibility
of our proposed system.

A.1 Implementation details for the baseline sample
selectors

A.1.1 Entropy-based selection

For each unlabeled concept pair, we compute the Shannon
entropy,

∑
i∈L −pi .log2(pi ), where L={0,1} indicates the

class labels, 1 for matching and 0 for non-matching, and pi
indicates the probabilitywithwhich the pair is amatch. Those
pairs which have the highest entropy are selected in each
active learning (AL) iteration [2, 60]. Interestingly, the pairs
whose probabilities are highly ambiguous (close to 0.5), yield
the highest entropy of 1.0. Therefore, for probabilistic clas-
sifiers, entropy-based selection can be seen as an analogous
variant of margin-based selection which selects examples
that have the least distance from the class-separator prob-
ability 0.5.

A.1.2 Query-by-committee

Algorithm7 shows howQBC [40] is implemented. In each
AL iteration, we create a committee of classifiers trained on
several sampled sets of training data drawn with replacement
(lines 2 and 3). The size of each training sample set is equal
to the size of the training set of sampled pairs accumulated
until the current AL iteration. Subsequently, we compute the
labeling variance among the classifier committee for each
unlabeled pair (lines 5 to 10) in Premaining and find the top-k
remaining pairs with the highest variance (line 12). The com-
mittee variance for each unlabeled pair is computed based on
the fraction of classifiers that label the pair as ‘matching’ and
‘non-matching’ (lines 6 to 8). It is essential to note that we
train the committee in parallel to save on example selection
time to give a fair advantage to the QBC baseline.

Algorithm 7 QBC(Ptrain, Premaining, batchSize,
committeeSi ze)
1: init Psel = {}
2: Samples ← sampleWithReplacement(Ptrain,committeeSi ze)
3: committee ← trainClassifiers(Samples)
4: scores ← []
5: for j : 0 to |Premaining | − 1 do
6: posModels ← findClassifiers(Premaining[ j], committee,

‘matching’)
7: negModels ← findClassifiers(Premaining[ j], committee, ‘non-

matching’)
8: variance ← |posModels|×|negModels|

committeeSi ze
9: scores[ j] ← variance
10: end for
11: sorted Pairs ← Sort Premaining DESC on scores
12: Psel ← choose batchSi ze pairs with the highest score from

sorted Pairs
13: return Psel

A.1.3 OASIS

Algorithm 8 shows the working of OASIS [38] which is
an adaptive importance weighted sampling (AIS) technique
that was originally developed as an F1-score estimator for
Entity Matching (EM). We adapt it to GNN-based seman-
tic schema matching for ontologies by including a few
implementation-level changes, without altering the funda-
mental sample selection mechanism described in the original
paper [38].

Algorithm 8OASIS(Premaining, batchSize,model, ncluster )
1: init Psel = {}
2: Probsrem ← model.PredProb(Premaining)
3: strata ← equiWidthBinning(Premaining, Probsrem, ncluster )
4: weights ← computeImportanceWeights(strata)
5: sortedStrata ← Sort strata DESC on weights
6: Psel ← choose batchSi ze pairs at random from sortedStrata
7: return Psel

– OASIS replaces the discriminativemodel (classifier)with
a generative model. We instead use GNNs as the dis-
criminative model for a consistent implementation of all
baselines.

– OASIS creates a stratum (or a grouping) by using equi-
width binning on the record similarities between a pair of
entities computed using string similarity functions [58].
Since we work on schema graphs, we use the predicted
matching probabilities for concept pairs as the similar-
ity scores upon which we employ equi-width binning to
create the strata (line 2 in Algorithm 8).

– OASIS creates the strata only once and uses them through
all the AL iterations to select one sample in each AL
iteration.We extendOASIS to perform batched sampling
and while doing so, we encountered several empty strata
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in the later AL iterations, that led to highly sub-optimal
matching quality. Therefore, we refine the strata in each
AL iteration by discarding the unlabeled pairs that have
been labeled by the oracle. This was done to give more
advantage to our implementation of the OASIS baseline.

In our implementation, OASIS creates the strata on the
remaining unlabeled pairs in each AL iteration (line 3 in
Algorithm 8). It then computes the importance weights for
each stratum (line 4) according to Equation 12 in the orig-
inal OASIS paper [38], which balances an exploration vs.
exploitation trade-off. It assigns more weight to the largest
representative stratum that contains the most number of
unlabeled pairs (exploitation) with ε probability vs. using
an asymptotic formula for stratum importance computation
(exploitation) with (1-ε) probability. We used the default
settings from the original paper for the parameters used
in importance weight computation such as the estimated
F-measure weight (α=0.5) and ε=0.001. After the compu-
tation of importance weights, we sort the strata and pick
the top-k unlabeled pairs for sampling at random from the
topmost strata with the highest importance weights, where
k=batchSize.

A.1.4 Degree and centrality-based selection

While degree-based selection [6] chooses a batch of concept
pairs with the highest sum of node degrees, centrality-based
selection chooses those node pairs whose constituent nodes
have the least distance from their respective ontology cluster
centroids. The stratified variants of these selection strategies
diversify the selection by uniformly selecting a fixed number
of locally best candidate pairs within each ontology cluster.

A.2 Availability

The techniques implemented in Alfa are being patented.
The BANK-KAFS dataset contains sensitive data and is
proprietary. Hence both the source code for Alfa and the
BANK-KAFS dataset cannot be made publicly available at
this time. However, in order to help with reproducibility of
our proposed solution,we aremaking the pre-processed input
files, input embeddings and the output logs corresponding to
the other datasets used in our paper, CMT-CONF, HUMAN-
MOUSE anatomy and FMA-NCI available. Note that the
original ontologies of these three datasets are available at
[44], [45] and [26]. Following is a description of the items
available on our GitHub repository [1].

– Ontology_Node_Id_Label_MappingsThemappingfiles
contain theNode IDs andOWLclass labels i.e., the names
of all the schemaconceptswhich includenumerical (mea-

sures) and categorical (dimensions) attributes as well as
the data properties within the unified ontology graph that
combines both the input ontologies into a single graph.
All the concepts and data properties in the unified ontol-
ogy graph are further annotated by the values 1 and 2
respectively to distinguish between them.

– Ontology_Edge_ListThis contains all the edges between
the nodes that correspond to the object properties in the
unified ontology graph.

– Ontology_Node_Embeddings These are the Universal
Sentence Encodings (USE) for all the nodes in the unified
ontology graph. The ontology graph annotated with the
USE embeddings for its nodes is fed as input to the GNN,
along with the training data consisting of a progressively
increasing subset of oracle-labeled node pairs in each
active learning iteration.

– Pos_neg_pairs These are the ground truth labels for the
node pairs in the unified ontology graph. Note that we
used negative sampling fromQin et al. [53] to draw hard-
to-classify non-matching pairs. All the matching node
pairs referring to the same ontology concept are labeled
1 and the non-matching pairs are labeled 0.

– Seed_pairs These are the seed pairs used to train the
initial GNN model prior to active learning.

– Remaining_pairs These are the remaining pairs treated
as the unlabeled set for the purpose of active learning.

– Logs These contain the active learning progressive
F1-scores and latencies in each iteration for all the
approaches compared in the paper.

References

1. ALFA:ActiveLearning forGraphNeuralNetwork-basedSemantic
Schema Alignment (2023). https://github.com/vamsikrishna1902/
ALFA

2. Aggarwal,C.C.,Kong,X.,Gu,Q.,Han, J.,Yu, P.S.:Active learning:
a survey. In: Aggarwal, C.C. (Ed.) Data Classification: Algorithms
and Applications, pp. 571–606. CRC Press (2014). https://doi.org/
10.1201/b17320-23

3. Alsentzer, E.: ClinicalBERT—Bio +Clinical BERTModel. https://
huggingface.co/emilyalsentzer/Bio_ClinicalBERT (2020)

4. Atzeni, P., Bellomarini, L., Papotti, P., Torlone, R.: Meta-mappings
for schema mapping reuse. Proc. VLDB Endow. 12(5), 557–569
(2019). https://doi.org/10.14778/3303753.3303761

5. Bento, A., Zouaq, A., Gagnon, M.: Ontology matching using con-
volutional neural networks. In: Proceedings of The 12th Language
Resources and Evaluation Conference (LREC), pp. 5648–5653.
European Language Resources Association (2020)

6. Berrendorf, M., Faerman, E., Tresp, V.: Active learning for entity
alignment. In: Hiemstra, D., Moens, M.,Mothe, J., Perego, R., Pot-
thast,M., Sebastiani, F. (Eds.)Advances in InformationRetrieval—
43rd European Conference on IR Research, ECIR 2021, Virtual
Event, March 28–April 1, 2021, Proceedings, Part I, Lecture Notes
in Computer Science, vol. 12656, pp. 48–62. Springer (2021).
https://doi.org/10.1007/978-3-030-72113-8_4

7. Beygelzimer, A., Dasgupta, S., Langford, J.: Importance weighted
active learning. In: Danyluk, A.P., Bottou, L., Littman, M.L.

123

https://github.com/vamsikrishna1902/ALFA
https://github.com/vamsikrishna1902/ALFA
https://doi.org/10.1201/b17320-23
https://doi.org/10.1201/b17320-23
https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT
https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT
https://doi.org/10.14778/3303753.3303761
https://doi.org/10.1007/978-3-030-72113-8_4


Alfa: active learning for graph neural network-based semantic schema alignment 1009

(Eds.) Proceedings of the 26th Annual International Conference
on Machine Learning, ICML 2009, Montreal, Quebec, Canada,
June 14–18, 2009, ACM International Conference Proceeding
Series, vol. 382, pp. 49–56. ACM (2009). https://doi.org/10.1145/
1553374.1553381

8. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word
vectorswith subword information.Trans.Assoc.Comput. Linguist.
5, 135–146 (2017). https://doi.org/10.1162/tacl_a_00051

9. Cai, H., Zheng, V.W., Chang, K.C.C.: Active learning for graph
embedding. arXiv preprint arXiv:1705.05085 (2017)

10. Cer, D., Yang, Y., Kong, S., Hua, N., Limtiaco, N., John, R.S.,
Constant, N., Guajardo-Cespedes, M., Yuan, S., Tar, C., Sung,
Y., Strope, B., Kurzweil, R.: Universal sentence encoder. CoRR
arXiv:1803.11175 (2018)

11. Cer, D., Yang, Y., Kong, S., et al.: https://tfhub.dev/google/
universal-sentence-encoder-large/5

12. Cesa-Bianchi, N., Gentile, C., Vitale, F., Zappella, G.: A lin-
ear time active learning algorithm for link classification. In:
Bartlett, P.L., Pereira, F.C.N., Burges, C.J.C., Bottou, L., Wein-
berger, Q. (Eds.) Advances in Neural Information Process-
ing Systems 25: 26th Annual Conference on Neural Infor-
mation Processing Systems 2012. Proceedings of a meeting
held December 3–6, 2012, Lake Tahoe, Nevada, United States,
pp. 1619–1627 (2012). https://proceedings.neurips.cc/paper/2012/
hash/bf62768ca46b6c3b5bea9515d1a1fc45-Abstract.html

13. Chen, J., Jiménez-Ruiz, E., Horrocks, I., Antonyrajah, D., Hadian,
A., Lee, J.: Augmenting ontology alignment by semantic embed-
ding and distant supervision. In: Verborgh, R., Hose, K., Paulheim,
H., Champin, P., Maleshkova, M., Corcho, Ó., Ristoski, P., Alam,
M. (Eds.) The Semantic Web—18th International Conference,
ESWC 2021, Virtual Event, June 6–10, 2021, Proceedings, Lec-
ture Notes in Computer Science, vol. 12731, pp. 392–408. Springer
(2021). https://doi.org/10.1007/978-3-030-77385-4_23

14. Chen, X., Wang, T.: Combining active learning and semi-
supervised learning by using selective label spreading. In: 2017
IEEE International Conference on Data Mining Workshops
(ICDMW), pp. 850–857 (2017). https://doi.org/10.1109/ICDMW.
2017.154

15. Cheng, A., Zhou, C., Yang, H.,Wu, J., Li, L., Tan, J., Guo, L.: Deep
active learning for anchor user prediction. In: Kraus, S. (Ed.) Pro-
ceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI 2019, Macao, China, August 10–16,
2019, pp. 2151–2157. ijcai.org (2019). https://doi.org/10.24963/
ijcai.2019/298

16. Cohn, D., Atlas, L., Ladner, R.: Improving generalization with
active learning. Mach. Learn. 66, 201–221 (1994)

17. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-
training of deep bidirectional transformers for language under-
standing. In: Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long and Short
Papers), pp. 4171–4186. Association for Computational Linguis-
tics, Minneapolis (2019). https://doi.org/10.18653/v1/N19-1423

18. Faria, D., Pesquita, C., Santos, E., Palmonari,M., Cruz, I.F., Couto,
F.M.: The agreementmakerlight ontology matching system. In:
Meersman, R., Panetto, H., Dillon, T.S., Eder, J., Bellahsene, Z.,
Ritter, N., Leenheer, P.D., Dou, D. (Eds.) On the Move to Mean-
ingful Internet Systems: OTM 2013 Conferences—Confederated
International Conferences: CoopIS, DOA-Trusted Cloud, and
ODBASE 2013, Graz, Austria, September 9–13, 2013. Proceed-
ings, Lecture Notes in Computer Science, vol. 8185, pp. 527–541.
Springer (2013). https://doi.org/10.1007/978-3-642-41030-7_38

19. Firmani, D., Saha, B., Srivastava, D.: Online entity resolution using
an oracle. Proc. VLDB Endow. 9(5), 384–395 (2016). https://doi.
org/10.14778/2876473.2876474

20. Freund, Y., Seung, H., Shamir, E., Tishby, N.: Selective sampling
using the query by committee algorithm. Mach. Learn. 28(2–3),
133–168 (1997)

21. Gal, A., Roitman, H., Sagi, T.: From diversity-based prediction
to better ontology & schema matching. In: Bourdeau, J., Hendler,
J., Nkambou, R., Horrocks, I., Zhao, B.Y. (Eds.) Proceedings of
the 25th International Conference on World Wide Web, WWW
2016, Montreal, Canada, April 11–15, 2016, pp. 1145–1155. ACM
(2016). https://doi.org/10.1145/2872427.2882999

22. Galhotra, S., Firmani, D., Saha, B., Srivastava, D.: Robust entity
resolution using random graphs. In: Proceedings of the 2018 Inter-
national Conference on Management of Data, SIGMOD’18, pp.
3–18. ACM, New York (2018). https://doi.org/10.1145/3183713.
3183755

23. Gao, L., Yang, H., Zhou, C.,Wu, J., Pan, S., Hu, Y.: Active discrim-
inative network representation learning. In: IJCAI International
Joint Conference on Artificial Intelligence (2018)

24. Guo, Y., Greiner, R.: Optimistic active-learning usingmutual infor-
mation. In:Veloso,M.M. (Ed.) IJCAI2007, Proceedings of the 20th
International Joint Conference on Artificial Intelligence, Hyder-
abad, India, January 6–12, 2007, pp. 823–829 (2007). http://ijcai.
org/Proceedings/07/Papers/132.pdf

25. Hao, J., Lei, C., Efthymiou, V., Quamar, A., Özcan, F., Sun, Y.,
Wang, W.: MEDTO: medical data to ontology matching using
hybrid graph neural networks. In: Zhu, F., Ooi, B.C., Miao, C.
(Eds.) KDD’21: The 27th ACM SIGKDD Conference on Knowl-
edgeDiscovery andDataMining,Virtual Event, Singapore,August
14–18, 2021, pp. 2946–2954. ACM (2021). https://doi.org/10.
1145/3447548.3467138

26. He, Y., Chen, J., Antonyrajah, D., Horrocks, I.: Bertmap: a
BERT-based ontology alignment system. https://github.com/KRR-
Oxford/BERTMap

27. He, Y., Chen, J., Antonyrajah, D., Horrocks, I.: Bertmap: a
BERT-based ontology alignment system. In: Thirty-Sixth AAAI
Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth
Conference on Innovative Applications of Artificial Intelligence,
IAAI 2022, The Twelveth Symposium on Educational Advances
in Artificial Intelligence, EAAI 2022 Virtual Event, February 22–
March 1, 2022, pp. 5684–5691. AAAI Press (2022). https://ojs.
aaai.org/index.php/AAAI/article/view/20510

28. Hernández, M.A., Miller, R.J., Haas, L.M.: Clio: a semi-automatic
tool for schema mapping. In: Mehrotra, S., Sellis, T.K. (Eds.) Pro-
ceedings of the 2001 ACM SIGMOD International Conference on
Management of Data, Santa Barbara, CA, USA,May 21–24, 2001,
p. 607. ACM (2001). https://doi.org/10.1145/375663.375767

29. Jain, A., Sarawagi, S., Sen, P.: Deep indexed active learning
for matching heterogeneous entity representations. Proc. VLDB
Endow. 15(1), 31–45 (2021). https://doi.org/10.14778/3485450.
3485455

30. Jiménez-Ruiz, E., Grau, B.C.: Logmap: logic-based and scalable
ontology matching. In: Aroyo, L., Welty, C., Alani, H., Taylor,
J., Bernstein, A., Kagal, L., Noy, N.F., Blomqvist, E. (Eds.) The
Semantic Web—ISWC 2011—10th International Semantic Web
Conference, Bonn, Germany, October 23–27, 2011, Proceedings,
Part I, Lecture Notes in Computer Science, vol. 7031, pp. 273–
288. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-
25073-6_18

31. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search
with GPUs. IEEE Trans. Big Data 7(3), 535–547 (2019)

32. Jurisch, M., Igler, B.: Graph-convolution-based classification
for ontology alignment change prediction. In: Proceedings
of the Workshop on Deep Learning for Knowledge Graphs
(DL4KG2019) Co-located with (ESWC 2019), vol. 2377, pp. 11–
20. CEUR-WS.org (2019)

33. Kasai, J., Qian, K., Gurajada, S., Li, Y., Popa, L.: Low-resource
deep entity resolution with transfer and active learning. In: Korho-

123

https://doi.org/10.1145/1553374.1553381
https://doi.org/10.1145/1553374.1553381
https://doi.org/10.1162/tacl_a_00051
http://arxiv.org/abs/1705.05085
http://arxiv.org/abs/1803.11175
https://tfhub.dev/google/universal-sentence-encoder-large/5
https://tfhub.dev/google/universal-sentence-encoder-large/5
https://proceedings.neurips.cc/paper/2012/hash/bf62768ca46b6c3b5bea9515d1a1fc45-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/bf62768ca46b6c3b5bea9515d1a1fc45-Abstract.html
https://doi.org/10.1007/978-3-030-77385-4_23
https://doi.org/10.1109/ICDMW.2017.154
https://doi.org/10.1109/ICDMW.2017.154
https://doi.org/10.24963/ijcai.2019/298
https://doi.org/10.24963/ijcai.2019/298
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1007/978-3-642-41030-7_38
https://doi.org/10.14778/2876473.2876474
https://doi.org/10.14778/2876473.2876474
https://doi.org/10.1145/2872427.2882999
https://doi.org/10.1145/3183713.3183755
https://doi.org/10.1145/3183713.3183755
http://ijcai.org/Proceedings/07/Papers/132.pdf
http://ijcai.org/Proceedings/07/Papers/132.pdf
https://doi.org/10.1145/3447548.3467138
https://doi.org/10.1145/3447548.3467138
https://github.com/KRR-Oxford/BERTMap
https://github.com/KRR-Oxford/BERTMap
https://ojs.aaai.org/index.php/AAAI/article/view/20510
https://ojs.aaai.org/index.php/AAAI/article/view/20510
https://doi.org/10.1145/375663.375767
https://doi.org/10.14778/3485450.3485455
https://doi.org/10.14778/3485450.3485455
https://doi.org/10.1007/978-3-642-25073-6_18
https://doi.org/10.1007/978-3-642-25073-6_18


1010 V. V. Meduri et al.

nen, A., Traum, D.R., Màrquez, L. (Eds.) Proceedings of the 57th
Conference of theAssociation for Computational Linguistics, ACL
2019, Florence, Italy, July 28–August 2, 2019, Volume 1: Long
Papers, pp. 5851–5861. Association for Computational Linguis-
tics (2019). https://doi.org/10.18653/v1/p19-1586

34. Kipf, T.N., Welling, M.: Semi-supervised classification with graph
convolutional networks. In: 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France, April 24–26,
2017, Conference Track Proceedings. OpenReview.net (2017).
https://openreview.net/forum?id=SJU4ayYgl

35. Konda, P., Das, S.C., Gory, P.S., Doan, A., Ardalan, A., Ballard,
J.R., Li, H., Panahi, F., Zhang, H., Naughton, J.F., Prasad, S., Krish-
nan, G., Deep, R., Raghavendra, V.: Magellan: Toward building
entity matching management systems. PVLDB 9(12), 1197–1208
(2016). https://doi.org/10.14778/2994509.2994535

36. Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. Inf.
Theory 28(2), 129–136 (1982). https://doi.org/10.1109/TIT.1982.
1056489

37. MacQueen, J.B.: Some methods for classification and analysis
of multivariate observations. In: Cam, L.M.L., Neyman, J. (Eds.)
Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, vol. 1, pp. 281–297. University of Cali-
fornia Press (1967)

38. Marchant, N.G., Rubinstein, B.I.P.: In search of an entity resolu-
tion OASIS: optimal asymptotic sequential importance sampling.
Proc. VLDB Endow. 10(11), 1322–1333 (2017). https://doi.org/
10.14778/3137628.3137642

39. Meduri, V.V., Popa, L., Sen, P., Sarwat, M.: A comprehensive
benchmark framework for active learningmethods in entity match-
ing. In: Proceedings of the 2020 International Conference on
Management of Data, SIGMOD Conference 2020, Online Con-
ference [Portland, OR, USA], June 14–19, 2020, pp. 1133–1147
(2020). https://doi.org/10.1145/3318464.3380597

40. Mozafari, B., Sarkar, P., Franklin, M., Jordan, M., Madden, S.:
Scaling up crowd-sourcing to very large datasets: a case for active
learning. PVLDB 8(2), 125–136 (2014)

41. Mudgal, S., Li, H., Rekatsinas, T., Doan, A., Park, Y., Krishnan,
G., Deep, R., Arcaute, E., Raghavendra, V.: Deep learning for
entity matching: a design space exploration. In: Proceedings of
the 2018 International Conference on Management of Data, SIG-
MOD’18, pp. 19–34. ACM, New York (2018). https://doi.org/10.
1145/3183713.3196926

42. NLTK Word Tokenizer. https://www.nltk.org/api/nltk.tokenize.
punkt.html

43. Nguyen, T.T., Sanner, S.: Algorithms for direct 0-1 loss
optimization in binary classification. In: Proceedings of
the 30th International Conference on International Confer-
ence on Machine Learning—Volume 28, ICML’13, pp. III–
1085–III–1093. JMLR.org (2013). http://dl.acm.org/citation.cfm?
id=3042817.3043058

44. OAEI Conference Dataset. http://oaei.ontologymatching.org/
2021/conference/ (2021)

45. OAEI Human-Mouse Anatomy Dataset. http://oaei.
ontologymatching.org/2021/anatomy/ (2021)

46. OAEI: OAEI 2021::Large BioMed Track. https://www.cs.ox.ac.
uk/isg/projects/SEALS/oaei/2021/ (2021)

47. Ostapuk, N., Yang, J., Cudré-Mauroux, P.: Activelink: deep active
learning for link prediction in knowledge graphs. In: Liu, L.,White,
R.W., Mantrach, A., Silvestri, F., McAuley, J.J., Baeza-Yates, R.,
Zia, L. (Eds.) TheWorldWideWeb Conference, WWW2019, San
Francisco, CA, USA, May 13–17, 2019, pp. 1398–1408. ACM
(2019). https://doi.org/10.1145/3308558.3313620

48. Papadakis, G., Fisichella, M., Schoger, F., Mandilaras, G., Aug-
sten, N., Nejdl, W.: Benchmarking filtering techniques for entity
resolution. In: 2023 IEEE 39th International Conference on Data

Engineering (ICDE), pp. 653–666 (2023). https://doi.org/10.1109/
ICDE55515.2023.00389

49. pinecone: Nearest Neighbor Indexes for Similarity Search. https://
www.pinecone.io/learn/series/faiss/vector-indexes/ (2019)

50. Qian, K., Popa, L., Sen, P.: Active learning for large-scale entity
resolution. In: Lim, E., Winslett, M., Sanderson, M., Fu, A.W.,
Sun, J., Culpepper, J.S., Lo, E., Ho, J.C., Donato, D., Agrawal, R.,
Zheng, Y., Castillo, C., Sun, A., Tseng, V.S., Li, C. (Eds.) Pro-
ceedings of the 2017 ACM on Conference on Information and
Knowledge Management, CIKM 2017, Singapore, November 6–
10, 2017, pp. 1379–1388. ACM (2017). https://doi.org/10.1145/
3132847.3132949

51. Qian, K., Popa, L., Sen, P.: Systemer: a human-in-the-loop sys-
tem for explainable entity resolution. Proc. VLDB Endow. 12(12),
1794–1797 (2019). https://doi.org/10.14778/3352063.3352068

52. Qian, K., Raman, P.C., Li, Y., Popa, L.: Learning structured
representations of entity names using active learning and weak
supervision. In: Webber, B., Cohn, T., He, Y., Liu, Y. (Eds.) Pro-
ceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2020, Online, November 16–20,
2020, pp. 6376–6383. Association for Computational Linguistics
(2020). https://doi.org/10.18653/v1/2020.emnlp-main.517

53. Qin, X., Sheikh, N., Reinwald, B., Wu, L.: Relation-aware graph
attention model with adaptive self-adversarial training. In: Thirty-
Fifth AAAI Conference on Artificial Intelligence, AAAI 2021,
Thirty-Third Conference on Innovative Applications of Artificial
Intelligence, IAAI 2021, The Eleventh Symposium on Educational
Advances in Artificial Intelligence, EAAI 2021, Virtual Event,
February 2–9, 2021, pp. 9368–9376. AAAI Press (2021). https://
ojs.aaai.org/index.php/AAAI/article/view/17129

54. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic
schema matching. VLDB J. 10(4), 334–350 (2001). https://doi.
org/10.1007/s007780100057

55. Ratner, A., Bach, S.H., Ehrenberg, H., Fries, J., Wu, S., Ré, C.:
Snorkel: rapid training data creation with weak supervision. Proc.
VLDB Endow. 11(3), 269–282 (2017). https://doi.org/10.14778/
3157794.3157797

56. Rousseeuw, P.: Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. J. Comput. Appl. Math. 20(1), 53–65
(1987)

57. Roy, N., McCallum, A.: Toward optimal active learning through
sampling estimation of error reduction. In: Brodley, C.E., Danyluk,
A.P. (Eds.) Proceedings of the Eighteenth International Con-
ference on Machine Learning (ICML 2001), Williams College,
Williamstown, MA, USA, June 28–July 1, 2001, pp. 441–448.
Morgan Kaufmann (2001)

58. Simmetrics Java Library. https://github.com/Simmetrics/
simmetrics

59. scikit learn: sklearn.metrics.silhouette-score. https://scikit-learn.
org/stable/modules/generated/sklearn.metrics.silhouette_score.
html (2007)

60. Sarawagi, S., Bhamidipaty, A.: Interactive deduplication using
active learning. In: KDD, pp. 269–278 (2002)

61. Satopaa, V., Albrecht, J.R., Irwin, D.E., Raghavan, B.: Finding a
“kneedle" in a haystack: detecting knee points in system behavior.
In: ICDCS Workshops, pp. 166–171 (2011)

62. Schlichtkrull, M.S., Kipf, T.N., Bloem, P., van den Berg, R., Titov,
I., Welling, M.: Modeling relational data with graph convolu-
tional networks. CoRR abs/1703.06103 (2017). http://arxiv.org/
abs/1703.06103

63. Seung, H., Opper, M., Sompolinsky, H.: Query by committee. In:
Workshop on COLT, pp. 287–294 (1992)

64. Shraga, R., Gal, A., Roitman, H.: Adnev: cross-domain schema
matching using deep similarity matrix adjustment and evaluation.
Proc. VLDB Endow. 13(9), 1401–1415 (2020). https://doi.org/10.
14778/3397230.3397237

123

https://doi.org/10.18653/v1/p19-1586
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.14778/2994509.2994535
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.14778/3137628.3137642
https://doi.org/10.14778/3137628.3137642
https://doi.org/10.1145/3318464.3380597
https://doi.org/10.1145/3183713.3196926
https://doi.org/10.1145/3183713.3196926
https://www.nltk.org/api/nltk.tokenize.punkt.html
https://www.nltk.org/api/nltk.tokenize.punkt.html
http://dl.acm.org/citation.cfm?id=3042817.3043058
http://dl.acm.org/citation.cfm?id=3042817.3043058
http://oaei.ontologymatching.org/2021/conference/
http://oaei.ontologymatching.org/2021/conference/
http://oaei.ontologymatching.org/2021/anatomy/
http://oaei.ontologymatching.org/2021/anatomy/
https://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2021/
https://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2021/
https://doi.org/10.1145/3308558.3313620
https://doi.org/10.1109/ICDE55515.2023.00389
https://doi.org/10.1109/ICDE55515.2023.00389
https://www.pinecone.io/learn/series/faiss/vector-indexes/
https://www.pinecone.io/learn/series/faiss/vector-indexes/
https://doi.org/10.1145/3132847.3132949
https://doi.org/10.1145/3132847.3132949
https://doi.org/10.14778/3352063.3352068
https://doi.org/10.18653/v1/2020.emnlp-main.517
https://ojs.aaai.org/index.php/AAAI/article/view/17129
https://ojs.aaai.org/index.php/AAAI/article/view/17129
https://doi.org/10.1007/s007780100057
https://doi.org/10.1007/s007780100057
https://doi.org/10.14778/3157794.3157797
https://doi.org/10.14778/3157794.3157797
https://github.com/Simmetrics/simmetrics
https://github.com/Simmetrics/simmetrics
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
http://arxiv.org/abs/1703.06103
http://arxiv.org/abs/1703.06103
https://doi.org/10.14778/3397230.3397237
https://doi.org/10.14778/3397230.3397237


Alfa: active learning for graph neural network-based semantic schema alignment 1011

65. Snyder, T.: The Benefits of Machine Learning for Large Scale
Schema Mapping. https://tinyurl.com/4nxmkevr (2019)

66. ten Cate, B., Kolaitis, P.G., Qian, K., Tan, W.: Active learning of
GAV schema mappings. In: den Bussche, J.V., Arenas, M. (Eds.)
Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Sympo-
sium on Principles of Database Systems, Houston, TX, USA, June
10–15, 2018, pp. 355–368. ACM (2018). https://doi.org/10.1145/
3196959.3196974

67. Thirumuruganathan, S., Li, H., Tang, N., Ouzzani, M., Govind, Y.,
Paulsen, D., Fung, G., Doan, A.: Deep learning for blocking in
entity matching: a design space exploration. Proc. VLDB Endow.
14(11), 2459–2472 (2021). https://doi.org/10.14778/3476249.
3476294

68. Vesdapunt, N., Bellare, K., Dalvi, N.N.: Crowdsourcing algo-
rithms for entity resolution. Proc. VLDBEndow. 7(12), 1071–1082
(2014). https://doi.org/10.14778/2732977.2732982

69. Wang, J., Kraska, T., Franklin, M.J., Feng, J.: CrowdER: crowd-
sourcing entity resolution. PVLDB 5(11), 1483–1494 (2012)

70. Wang, J., Li, G., Yu, J.X., Feng, J.: Entity matching: how similar
is similar. Proc. VLDB Endow. 4(10), 622–633 (2011). https://doi.
org/10.14778/2021017.2021020

71. Wang, Z., Cruz, I.F.: Agreementmakerdeep results for OAEI 2021.
In: Shvaiko, P., Euzenat, J., Jiménez-Ruiz, E., Hassanzadeh, O.,
Trojahn, C. (Eds.) Proceedings of the 16th International Work-
shop on Ontology Matching co-located with the 20th International
SemanticWebConference (ISWC2021),Virtual conference,Octo-
ber 25, 2021, CEUR Workshop Proceedings, vol. 3063, pp. 124–
130. CEUR-WS.org (2021). http://ceur-ws.org/Vol-3063/oaei21_
paper3.pdf

72. Wu, R., Chaba, S., Sawlani, S., Chu, X., Thirumuruganathan, S.:
Zeroer: entity resolution using zero labeled examples. In: Proceed-
ings of the 2020 International Conference onManagement of Data,
SIGMOD Conference 2020, Online Conference [Portland, OR,
USA], June 14–19, 2020, pp. 1149–1164 (2020). https://doi.org/
10.1145/3318464.3389743

73. Wu, Y., Xu, Y., Singh, A., Yang, Y., Dubrawski, A.: Active learn-
ing for graph neural networks via node feature propagation. arXiv
preprint arXiv:1910.07567 (2019)

74. Yan, Y., Liu, L., Ban, Y., Jing, B., Tong, H.: Dynamic knowledge
graph alignment. In: Thirty-Fifth AAAI Conference on Artificial
Intelligence, AAAI 2021, Thirty-Third Conference on Innovative
Applications of Artificial Intelligence, IAAI 2021, The Eleventh
Symposium on Educational Advances in Artificial Intelligence,
EAAI 2021, Virtual Event, February 2–9, 2021, pp. 4564–4572.
AAAI Press (2021). https://ojs.aaai.org/index.php/AAAI/article/
view/16585

75. Zhang, R., Trisedya, B.D., Li, M., Jiang, Y., Qi, J.: A benchmark
and comprehensive survey on knowledge graph entity alignment
via representation learning. VLDB J. 31(5), 1143–1168 (2022).
https://doi.org/10.1007/s00778-022-00747-z

76. Zhang, W., Shen, Y., Li, Y., Chen, L., Yang, Z., Cui, B.: ALG:
fast and accurate active learning framework for graph convolu-
tional networks. In: Li, G., Li, Z., Idreos, S., Srivastava, D. (Eds.)
SIGMOD’21: International Conference on Management of Data,
Virtual Event, China, June 20–25, 2021, pp. 2366–2374. ACM
(2021). https://doi.org/10.1145/3448016.3457325

77. Zhang, W., Wei, H., Sisman, B., Dong, X.L., Faloutsos, C., Page,
D.: Autoblock: a hands-off blocking framework for entity match-
ing. In: Caverlee, J., Hu, X.B., Lalmas, M., Wang, W. (Eds.)
WSDM’20: The Thirteenth ACM International Conference on
Web Search and Data Mining, Houston, TX, USA, February
3–7, 2020, pp. 744–752. ACM (2020). https://doi.org/10.1145/
3336191.3371813

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

https://tinyurl.com/4nxmkevr
https://doi.org/10.1145/3196959.3196974
https://doi.org/10.1145/3196959.3196974
https://doi.org/10.14778/3476249.3476294
https://doi.org/10.14778/3476249.3476294
https://doi.org/10.14778/2732977.2732982
https://doi.org/10.14778/2021017.2021020
https://doi.org/10.14778/2021017.2021020
http://ceur-ws.org/Vol-3063/oaei21_paper3.pdf
http://ceur-ws.org/Vol-3063/oaei21_paper3.pdf
https://doi.org/10.1145/3318464.3389743
https://doi.org/10.1145/3318464.3389743
http://arxiv.org/abs/1910.07567
https://ojs.aaai.org/index.php/AAAI/article/view/16585
https://ojs.aaai.org/index.php/AAAI/article/view/16585
https://doi.org/10.1007/s00778-022-00747-z
https://doi.org/10.1145/3448016.3457325
https://doi.org/10.1145/3336191.3371813
https://doi.org/10.1145/3336191.3371813

	Alfa: active learning for graph neural network-based semantic schema alignment
	Abstract
	1 Introduction
	2 Related work
	2.1 Schema matching
	2.2 Active learning
	2.3 Blocking

	3 Preliminaries and system overview
	3.1 Relational versus semantic schema alignment
	3.2 Entity alignment in knowledge graph versus semantic schema alignment
	3.3 GNN-based semantic schema alignment
	3.4 Generic active learning framework
	3.4.1 Sample selection
	3.4.2 Label propagation
	3.4.3 Blocking

	3.5 Alfa system overview


	4 ALFA system design
	4.1 Ontology-aware sample selection
	4.2 Ontology-aware label propagation
	4.3 Semantic blocking
	4.4 Putting it all together
	4.5 Computational complexity of Alfa

	5 Experimental evaluation
	5.1 Experimental setup
	5.1.1 Datasets
	5.1.2 Evaluation metrics
	5.1.3 Baselines
	5.1.4 Configurations and settings

	5.2 Evaluation of ontology-aware sample selection
	5.3 Evaluation of ontology-aware label propagation
	5.4 Evaluation of semantic blocking
	5.5 Alfa: end-to-end system evaluation

	6 Conclusions
	A Appendix
	A.1 Implementation details for the baseline sample selectors
	A.1.1 Entropy-based selection
	A.1.2 Query-by-committee
	A.1.3 OASIS
	A.1.4 Degree and centrality-based selection

	A.2 Availability

	References




