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Prediction of the next SQL query from the user, given her sequence of queries until the current timestep, dur-
ing an ongoing interaction session of the user with the database, can help in speculative query processing and
increased interactivity. While existing machine learning— (ML) based approaches use recommender systems
to suggest relevant queries to a user, there has been no exhaustive study on applying temporal predictors to
predict the next user issued query.

In this work, we experimentally compare ML algorithms in predicting the immediate next future query in
an interaction workload, given the current user query or the sequence of queries in a user session thus far. As
a part of this, we propose the adaptation of two powerful temporal predictors: (a) Recurrent Neural Networks
(RNNs) and (b) a Reinforcement Learning approach called Q-Learning that uses Markov Decision Processes.
We represent each query as a comprehensive set of fragment embeddings that not only captures the SQL
operators, attributes, and relations but also the arithmetic comparison operators and constants that occur in
the query. Our experiments on two real-world datasets show the effectiveness of temporal predictors against
the baseline recommender systems in predicting the structural fragments in a query w.r.t. both quality and
time. Besides showing that RNNs can be used to synthesize novel queries, we find that exact Q-Learning
outperforms RNNs despite predicting the next query entirely from the historical query logs.
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1 INTRODUCTION

Given a sequence of SQL queries (qu;)!_, = (qu1, qua, ..., qu;) from a user U in a querying session
upon a relational database until the current timestep i, we define qu;;; as the future SQL query
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issued by the user at the immediate next timestep i + 1. Under the scenario that there are several
such active user sessions concurrently posing queries to the database, what would be the ideal
machine learning (ML) algorithm that can predict the next user query for each of these ongoing
sessions accurately? To answer this question, we build a next query predictor that we assume has
access to the historical query logs of all the interaction sessions held thus far against the database.
To predict the next query, we exploit the user think time [20], which is defined as the time delay
between the issuance of two successive queries. The end user who issues the queries can either
be a human or a transactional/analytical application running in the background. During this user
think time, an ML model can predict the next SQL query and can also be refined periodically.

Prediction of the next SQL query can lead to several benefits ranging from adaptive indexing to
speculative query optimization and processing to database tuning. If we can predict the next SQL
query in its entirety during the user think time, then we can speculatively execute it and prefetch
its results into the memory. When the actual next query arrives, we can skip its execution and re-
turn the prefetched results directly from the memory. Even if an SQL query cannot be predicted in
its entirety, knowing apriori the impending query operators and their associated schema elements
(defined as query fragments [13]) from the successive query is useful. If we know the set of tables
and attributes participating in projection/selection/join/aggregate predicates, then it can allow for
partial or full query plan construction during the user think time. The database can also evaluate it
partially or entirely depending on the structure of the SQL query. Predicting sort (ORDER BY) and
aggregate (COUNT) operator fragments can help in pre-allocation of buffer pages and configuring
# CPU-bound threads to parallelize their execution. Likewise, being cognizant of the selection (or
join) predicates can help us pre-load or create indexes if we know the possible range of constants
in the selection predicates. The goal of this work is to compare the state-of-the-art ML algorithms
and find the best approach suitable for query fragment prediction. To evaluate if the predicted
query fragments have tangible benefits for database systems, we choose speculative query execu-
tion and query result prefetching as the target application. Although building a caching middle-
ware is beyond the scope of this article, we re-generate the entire SQL query from the predicted
fragments and execute it to evaluate the results of the predicted SQL query against the actual
SQL query that occurs at the next timestep. The other aforementioned benefits from query pre-
diction such as database tuning, buffer management, speculative query optimization, and adaptive
indexing can be realized by building downstream applications as a part of possible future work
that can utilize the best performing ML approach found from our experimental evaluation in this
article.

Prior work relevant to next query prediction can be classified into four broad categories: user
intent prediction for interactive data exploration, query recommendation and autocompletion, la-
tency reduction for data exploration, and usage of ML for other relevant problems such as cardinal-
ity estimation and workload generation. More details about these categories can be found in Sec-
tion 2. Among them, the closest family of learning-based techniques that can be applied to query
prediction includes query recommenders. Query recommendation using session similarity-based
collaborative filtering [13] suggests the most relevant queries from other prior/ongoing interac-
tion sessions to the current user session in progress. Relevance or session similarity is computed
based on the fraction of overlapping SQL query fragments across the sessions. Likewise, a matrix
factorization-based collaborative filtering approach [14] was also proposed for query recommen-
dation. However, both these approaches sample historical queries to alleviate the computational
cost of fragment similarity. Active learning-based approaches [11, 12] use binary classifier variants
of SVMs and decision trees to distinguish tuples of eventual interest to the user from uninteresting
tuples in the underlying database. The purpose of this line of work is to discover the tuples that
answer the goal (last) query from a session in as few iterations (human-database interactions) as
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possible. A fundamental limitation in adapting this approach to query prediction is that the tuples
of eventual interest only correspond to the last query in a query session. This disallows its applica-
bility to predict the next query, because there is only one goal query per session that is static and
cannot change at each timestep. Other limitations include the need to train a separate classifier
for each user session that affects scalability with growing #sessions.

Contrary to the existing approaches [11, 12] that predict static (eventual) user intent, we cap-
ture the dynamically changing user intent by predicting the next query that brings several benefits
as mentioned earlier. Predicting query fragments is more scalable than tuple classification, which
is why we formulate each query as its constituent fragments of co-occurring schema elements
and SQL operators. Since classifiers such as Support Vector Machines (SVMs) or decision trees are
inapplicable in this context, predicting the query fragments at each timestep requires powerful
temporal predictors. Thus we compare the performance of Recurrent Neural Networks (RNNs)
and Q-Learning against two recommender system baselines: session-similarity-based Collabora-
tive Filtering [13] and Singular Value Decomposition— (SVD) based matrix factorization [14]. We
propose two adaptations of RNNs—one that predicts the next query from the pool of historical
interaction sessions and another that can synthesize a completely novel query based on the learn-
ing it has undergone. Likewise, we also propose two formulations of reward functions for exact
Q-Learning—a “Boolean” reward function that reinforces predicted queries that entirely match
the expected queries and a relaxed “Numeric” reward function that learns sequences of predicted
queries that have a high percentage of overlapping fragments with those from the expected queries.
Eirinaki et al. [13] term the co-occurrences of SQL operators and their associated schema elements
as query fragments but confine them to projected attributes, relations, selection and join predicates.
We extend the definition of fragments to also capture the possible ranges of selection predicate
constants of all data types, while supporting more Data Manipulation Language (DML) types such
as INSERT, UPDATE, and DELETE besides Select, Project, Join queries. The advantage in our ex-
tended fragment definition is that it represents an SQL query more exhaustively as compared to
Reference [13], and this specifically helps in re-generating the SQL query in as much of a lossless
manner as possible from the fragments. This allows us to use our extended embedding fragments
as generic feature vectors that represent an SQL query as a whole. In this work, we evaluate the
performance of various ML approaches in predicting the fragments/syntactic features in the next
SQL query to be issued by an end user or an application, given the sequence of queries issued thus
far in an interaction session. Besides that, we also propose heuristics to re-generate the SQL query
from the predicted fragments and execute the re-generated SQL query to compare it against the
actual next query in terms of the result tuples as well.

We use one-hot encoding to represent the SQL queries as bit vector embeddings (that record
the presence or absence of SQL fragments within each query) upon which ML models can be
trained and tested. This is in contrast to existing embedding techniques such as Word2Vec [33]
or GloVE [41] that create floating point latent dimensions from raw natural language text. We
do not use these libraries, because (a) they are agnostic to the SQL structure and the semantic
importance attached to each distinct SQL-specific keyword in a query and (b) the low-dimensional
latent embedding cannot be easily reverse engineered into an SQL query and hence evaluating the
predicted embeddings w.r.t. SQL fragments is not straightforward. An important property of our
proposed fragment embedding is that the SQL operators, schema elements, comparison operators,
and constant range bins can be easily reconstructed from the predicted embedding vector.

Figure 1 illustrates the end-to-end functionality of our benchmark system. Given an SQL query
qu; issued at timestep i, we derive a fragment embedding for qu; as a bit vector. We feed the em-
bedding of qu; to the next query predictor that predicts the fragments in the next query qu;;, an-
ticipated to be issued by the end user (application) at timestep i+1. Simultaneously, qu; is executed
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(Application K
! /i or Human User) Current Query (qu;) Next Query
SQL Query at Timestep i: (Fragments)
qu;: SELECT * from Tablel; Predictor
(1001000000101..01) Results (qu;) +

Predicted Query (qu;,1)
Schema- aware SQL Fragment Embedding vector
Predicted Embedding:
Database

{Select, Count; Attr1, Attr2, Table1, Aggr(grpBy)Attr2}
(100100000111 ....111)

SQL Equivalent of the Predicted Embedding:
Select count(Attr1), Attr2 from Table1l group by Attr2;

Fig. 1. Predicting fragments in the next query.

and its result tuples are returned to the querying application along with the predicted embedding
of qui11. In the example shown in Figure 1, it is interesting to note that the predicted fragment
embedding is self-sufficient in completely reconstructing the SQL query as it is devoid of WHERE
clauses or selection predicates. We predict a selection predicate as {ATTR, OP, CONST-BIN} where
ATTR, OP, and CONST-BIN denote the schema attribute, the comparison operator, and a pre-
defined constant value range bin for ATTR, respectively. We compare the temporal predictors, i.e.,
RNNs and Q-Learning against recommender system baselines from the literature w.r.t. prediction
quality and response time. Our evaluation is presented upon two real-world datasets in both offline
and online training settings described in Section 3.3. Following is a summary of our contributions.

We build a next query prediction framework that compares several state-of-the-art ML al-
gorithms in predicting the fragments from the immediate next SQL query in an interaction
session upon various evaluation metrics such as the prediction quality, response time and
the memory consumption of the algorithms.

Instead of using external libraries such as Word2Vec [33] or GloVe [41] that create SQL-
agnostic word embeddings, we use a schema-aware SQL fragment embedding mechanism
based on one-hot encoding that effectively captures all possible combinations of database
operators and schema elements that can occur in SQL queries along with the comparison
operators and constant bin ranges in the selection predicates of these queries. The same
embedding scheme is used to generate feature vectors uniformly for all the ML algorithms.
We propose the usage of an incrementally trained RNN for query fragment prediction. Our
adaptation of RNNs has a unique ability to synthesize completely novel combinations of
fragments into a meaningful SQL query, besides recommending historical queries from prior
interaction sessions.

We propose the usage of a reinforcement learning algorithm called exact Q-Learning for
query fragment prediction. We model the agent, environment, reward function, state space,
and action space of the Markov Decision Processes (MDPs) based on the semantics of the
query prediction task. We propose two variants of reward functions, Boolean and Numeric,
to learn the sequences of queries.

Besides comparing RNN and Q-Learning against each other, we also implement the query
recommendation algorithms of query similarity-based collaborative filtering and matrix
factorization from [13, 14]. We uniformly parallelize the prediction phase of all the afore-
mentioned algorithms to preserve the interactivity.

We compare all the contending algorithms on real-world datasets by conducting two kinds
of experiments that we term as sustenance and singularity to test the effectiveness of ML
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models built respectively during offline and online training steps. For our sustenance ex-
periments, we provide an SQL operator-wise breakdown of the prediction performance.

e We also discuss how an SQL query can be re-generated from the predicted fragment embed-
dings and evaluate the predicted queries against the actual next queries w.r.t. their execution
results.

The remaining article is organized as follows: We describe the two real-world datasets we use
and the cleaning heuristics we deploy upon the query logs of these datasets to obtain meaningful
user sessions, followed by a detailing of our proposed schema-aware fragment embedding ap-
proach, the evaluation methods, and the ML approaches compared in the framework. Finally, we
describe our experimental findings along with a detailed discussion and analysis of the results.

2 RELATED WORK

Existing literature that is relevant to query workload prediction can be classified into four broad
categories: (1) user intent prediction based on interactive data exploration, (2) query recommen-
dation and autocompletion, (3) latency reduction for data exploration, and (4) using ML for re-
lated problems such as join cardinality estimation, workload arrival rate prediction, and workload
generation.

1) User intent prediction for interactive data exploration (IDE): User intent is formulated
by IDE applications in terms of the data that the user is interested in. Systems such as smart drill-
down [19], Indiana [16], and SeeDB [48] define statistical interestingness heuristics that require
that diverse data matching the user interest is retrieved. One notion of statistical interestingness is
the surprisingness factor that can be defined through the KL-divergence between the distributions
of the data retrieved by a user thus far and the next set of tuples that she would be interested in
retrieving. REACT [46] defines a set of data interestingness heuristics such as diversity, dispersion,
peculiarity, and conciseness and also captures user session context based on directed acyclic graphs
of context trees [34] to detect user intent. DynaCet [42] employs faceted search to identify the
attributes to group by (known as facets) and drill down upon to quickly capture the user intent. A
decision tree is built by choosing the facets that interest the user as the splitting attributes, which
also help in ranking the tuples of eventual interest to the user. At any given point in an exploration
session, based on the facets chosen by the user thus far, the facets that might interest the user are
recommended from the decision tree such that the user is quickly led to her intended tuples at the
leaf nodes. Active learning-based approaches [11, 12, 38, 40] represent the user intent as the last
query in a session. Meduri et al. [32] use RNNs to predict the dynamic user intent but the SQL
fragment embeddings support simpler next queries upon a single table without constants.

2) Query recommendation and autocompletion: While IDE applications aim to predict data
that interests the users in minimal user-database interactions, query prediction moves the abstrac-
tion one level up from data to queries and thus enables broader applications such as speculative
query processing, query prefetching, adaptive indexing, and so on, as discussed in Section 1, not
restricted to data exploration. Query steering [5] models the transitions among the queries in a
user session as a Markov chain and represents the states by exploration operators such as narrow,
drilldown, relate, and move, which are equivalent operators to “selection predicate,” “aggregation
using group by,” “join,” and “substituting the constant parameters in selection predicates with dif-
ferent values,” respectively. However, a simple Markov chain cannot incorporate a reward function
to encourage or penalize the transitions during the training and prediction phase, which is why
we rely on MDPs that can also capture the goal-oriented exploration that an analytical workload
may have. There have also been attempts to map Natural Language keyword queries to the under-
lying tuples that match the human intent [31] but these techniques cannot be directly applied to
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SQL query prediction. Query recommendation [6, 13], however, represents queries as bags of SQL
fragments and recommends queries from the historical logs aligning the most with the ongoing
interaction session in terms of overlapping query fragments. The problem of sparsity is overcome
by using sparse matrix factorization techniques [14] to recommend queries even under the absence
of a significantly large user history. Therefore, we compare temporal predictors against query rec-
ommenders as baseline techniques in this work.

Another related line of work on autocompletion of queries aims at automatically filling up the
missing parts of a query as a user is typing it. Existing works such as Chaudhuri and Kaushik [7]
and Deng et al. [10] complete keyword queries by building an initial trielike index on the data
and finding the closest active nodes from the trie matching the partial keyword query, whose leaf
node descendants form the complete keyword queries. Khoussainova et al. [22] auto-complete SQL
queries by representing all possible queries as nodes in a directed acyclic graph (DAG) and ranking
the transitions among the nodes in a graph based on their conditional probabilities computed
from heuristics such as popularity of query fragment co-occurrence in prior logs and foreign key
dependencies. The most likely transition (DAG edge) with the highest conditional probability is
chosen to identify the complete query (child DAG node) from a given partial query (current DAG
node). Although we do not address this problem in the article, using ML algorithms to solve it can
be an interesting future direction, given that existing works are based on heuristics.

3) Latency reduction for data exploration: Initial works from the past such as LeFevre et al.
[26] reduce the execution latency for an SQL query by rewriting it in such a way that it reuses the
materialized views from earlier executions of historical queries. Recent works such as Liang et al.
[29] propose the usage of reinforcement learning to decide upon whether or not to materialize
a query result into a view by estimating its long-term utility, given the information about the
set of materialized views from the past. Data canopy [49] is an effort to save on statistical query
exploration by saving the already computed statistics, looking ahead and precomputing results for
statistical queries likely to be asked in the future. While “Approximate Query Processing” systems
such as BlinkDB [3] work with samples and save on query processing time, more recent efforts
such as Verdict build query synopses [39], which help estimate the answers to the future queries
based on the answer sets retrieved for the queries asked thus far in the exploration sessions. DICE
[18, 20] is a related system that uses faceted exploration over a data cube to ensure that speculative
execution of queries that a user might be interested in, happens in sub-second latencies. In an
ongoing user session, each current (group by) query is represented by its result facet, and the
possible successor facets within the data cube are bounded by pre-defined roll-up, drill-down,
and pivot operations on the current facet and are prioritized by accuracy heuristics proposed in
Reference [20]. The most likely successor queries are discovered during the user think time and
their results are cached for seamless exploration. In our current work, we also exploit the user
think time between successive queries to predict the SQL fragments in the next query and also to
execute the SQL query re-generated from the predicted fragments. A detailed discussion on the
end-to-end query prediction latencies has been reported in Section 5.4.

4) ML for related problems: State-of-the-art ML predictors have been recently used to solve
several related problems such as join cardinality estimation, workload arrival rate prediction and
workload generation. Kipf et al. [23] use RNNs for an orthogonal purpose of estimating join car-
dinality in query workloads and therefore capture join and selection predicates from SQL queries
in feature vectors. Efforts have also been made to predict the arrival rate of representative query
clusters (templates that exclude constants from SQL queries) in a workload [30]. RNNs have most
recently been used to recommend data preparation steps in terms of the next operator to ap-
ply along with the corresponding schema element (column). Yan and He [52] use RNNs to pre-
dict the next SQL operator based on the logs from pre-crawled Jupyter data science notebooks.
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Subsequently, for the predicted SQL operator, the schema element such as the columns or tables
that co-occur with the operator is predicted separately by using operator-specific heuristics. On
similar lines, El et al. [15] use deep reinforcement learning to generate a query workload that can
be presented in a data science notebook. We differ from these existing works along the following
lines. In contrast to Reference [23], which featurizes a subset of SQL operators, and Reference [52],
which predicts one SQL operator at a time, we propose the creation of more comprehensive SQL
embedding vectors on wide real-world schemata containing multiple relations and columns. We
facilitate the prediction of an exhaustive list of SQL fragments comprising a variety of SQL opera-
tors and constants of all data types from any data distribution in contrast to Kipf et al. who encode
numerical constants in selection predicates with an underlying uniform distribution assumption
on the constant value space. More importantly, References [23, 52] do not allow for complete syn-
thesis of novel SQL queries using RNNs. We accomplish this by employing discretized thresholds
and syntax correction heuristics upon the numerical output vectors predicted by RNNs. Contrary
to El et al. [15], who use deep reinforcement learning in an unsupervised manner for workload gen-
eration and data interestingness metrics in lieu of a reward function, we adapt exact Q-Learning
in a supervised manner by learning the <state,action> pairs using a reward function that captures
the sequence of queries in a workload.

3 DATASETS, EMBEDDINGS, AND EVALUATION METHODS

Following is a formal definition of our problem at hand. Given a sequence of SQL queries
(qus)_, = (qui, qua,..., qu;) from a user U in a querying session upon a relational database
until the current timestep i, our goal is to predict the future query qu;;; issued by the user at the
immediate next timestep i + 1. Under the scenario that there are several such active user sessions
concurrently posing queries to the database, we aim to find the best performing ML algorithm that
can predict the next user query for each of these ongoing sessions. To achieve this, we adapt two
temporal predictors—Exact Q-Learning and Recurrent Neural Networks—to the problem of query
prediction and compare them against two collaborative filtering baselines [13, 14]. We approach
this problem in two steps: First, we predict the SQL fragments in the next query. Subsequently,
we re-generate the SQL query from the predicted fragments and execute it to obtain its result
tuples. We evaluate the ML contenders on the basis of how closely their predicted SQL fragments
and the re-generated query execution results match those of the actual next query.

We compare the ML algorithms for query prediction on two real-world datasets. While we curate
the query logs from the website of database courses taught at a university to create the first dataset,
the second one is obtained after pre-processing the query logs from a publicly available sample
of the Bus Tracker dataset at http://www.cs.cmu.edu/~malin199/data/tiramisu-sample/ also used
in Ma et al. [30]. We refer to these datasets by the names Course Website and Bus Tracker.

3.1 Description of the Datasets

Course Website is created from the interaction sessions and SQL query logs automatically gen-
erated from a website used to teach database courses at a university. The website hosts a rich
repository of lecture transcripts, Q & A sessions between instructor and students, and forum dis-
cussions amongst the students themselves. Since the course website was created using the Joomla!
open-source content management system [37], the website content is automatically stored in the
MySQL engine as a relational database forming the backend to the website. When a student logs
into the course website, she has a variety of user actions to perform using the web interface such
as a scroll on the forum discussions, or a click on a user profile or lecture recording. A student can
create, update and delete information on her user profile ranging from bio-data to reading lists,
her comments during a discussion on a forum thread, and assignment or homework submissions.
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All these actions are internally converted into SQL queries and are logged by the MySQL engine
as interaction sessions. Applying next query prediction on this dataset can predict the next action
that the user is about to take such as, but not confined to (a) the next search query to retrieve
some course information or a search for discussions on a specific topic (DML type = SELECT),
(b) posting a lecture recording/material or a response/question on the Q & A forum (DML type =
INSERT), or (c) an update to the reading list or the user profile (DML type = UPDATE/DELETE).

Bus Tracker is a mobile application that updates its database periodically with the bus locations
(DML type = INSERT/UPDATE) besides allowing the users to live-track the bus location, and find
its route information along with the nearest bus stops to their current location (DML type = SE-
LECT) [30]. The user queries are logged in the SQL format while the database backend is stored
on a PostgreSQL server. While the database schema and SQL queries are available, the content of
the tables (i.e., the tuples) is not publicly available. This is because Ma et al. [30] predict the arrival
rate of query templates that exclude constants, and this obviates the need for access to the actual
underlying data. In contrast to their work, we predict the fragments within the next query that
also comprise ranges of constants in the selection predicates. This requires access to the relational
tuples from which we generate equi-depth value range bins (histograms) for each of the attributes
(columns) participating in selection predicates. Therefore, our prediction of selection predicates in
the next query includes constants and comparison operators only for the Course Website dataset.
For the Bus Tracker dataset, the selection predicate prediction is only confined to the attributes
that participate in such predicates because of the lack of access to the database tuples.

The information about the user corresponding to each session is not stored in both the Course
Website and the Bus Tracker datasets. Upon interacting with the creators of the Course Website
dataset, we found that each distinct session only consists of the queries from a single user but a
user can create multiple sessions. The same holds true for the BusTracker dataset as well, because
a user session involves finding the location of a bus or the nearest bus stop and a user is allowed
to access the mobile application several times over distinct sessions. So there is a one-to-many
relationship from the users to the sessions in both the datasets. We do not need to identify the
user for each session, because our adaptation of ML algorithms does not require such information.
The train and test splits for evaluation are created upon a permuted set of sessions that are shuffled
enough to eliminate any bias w.r.t. the users who created them, in case consecutive sessions in a
dataset are assumed to be from the same user. Each session is fed independently in a user-agnostic
manner to the ML algorithms during the training or test phase.

3.1.1 Session-Cleaning Heuristics. An interaction session can be defined as a sequence of
queries issued by a user in a given time frame to accomplish an insert/update task (transactional)
or to derive an interesting insight (analytical) from the data. Although both the Course Website and
the Bus Tracker datasets contain transactional queries, they are predominantly analytical with 89%
and 86% SELECT queries respectively that support goal-oriented exploration. The query logs for
Course Website and Bus Tracker, stored in MySQL and PostgreSQL respectively, are pre-organized
into sessions. For Course Website, a unique session ID is assigned for each interaction and is stored
in an Id field. Another attribute, Command, specifies whether the interaction is an SQL query. For
instance, the first few interaction steps in each session involve connecting to and initializing the
database. Such queries are marked as “Connect” or “InitDB.” Every other command that involves
an SQL statement is marked as “Query.” In the case of Bus Tracker, each session has a distinct
ID and all the SQL queries that belong to the same session appear consecutively along with their
session ID. We logged the SQL queries from the users of Course Website over a span of 2 weeks
and pre-processed the logs using a set of heuristic rules to differentiate the interaction sessions of
crawlers (bots) from those that are more humanlike.
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Crawler generated sessions can have two properties: “repetition” and “recurrence.” Repetitive
interactions contain consecutive queries that have the same SQL fragments and the only variation
is in the constants. For example, Q1: select * from Posts where course_id=1; and Q2: select * from
Posts where course_id=2. From the Course Website query logs, we prune any session containing
such consecutive queries that are entirely the same except for the constants. Even though our
query prediction system does predict constants from the selection predicates, having too many of
repeated query sequences will make the prediction task trivial and negatively influence the quality
of the predictor. To reduce the bias in prediction and to clearly distinguish among the predictive
abilities of various ML algorithms, we only retain non-trivial query sequences in our sessions. To
achieve this in a time-efficient manner without having to actually convert the SQL query into its
fragment vectors, we prune sessions containing consecutive queries whose textual representations
have a Cosine similarity >0.8. This is a conservative similarity threshold chosen after manually
examining several sample SQL query pairs. In the case of Bus Tracker dataset, almost every query
session contains repetitive query patterns. Although this does not impact Ma et al. [30] whose
focus is on predicting the count of query templates, for the purpose of query fragment prediction,
it is important that we remove such repetitions. So from each query session, we remove such
repeated query patterns to retain non-trivial query sequences.

Recurring patterns are usually concatenations of the same type of interactions that can artifi-
cially enhance the length of a session. For instance, there are sessions that are recurring blocks of
two queries such as Q1: select * from Reading_List; Q2: select * from Course_Instructors; Q3: select
* from Reading_List; Q4: select * from Course_Instructors. Such a sequence can prolong to as many
as 200 queries that are 100 concatenations of the two SQL queries. We observed that the basic
building block of recurring query patterns can contain more than two queries and it is difficult
to parameterize the length of a recurring query block. Since we noticed that longer sessions are
more likely to be crawler based than shorter ones, we impose a session length limit of 50 (a conser-
vative threshold chosen after a manual examination of several random samples of user sessions)
and thereby restrict the number of queries in a session to ensure that the recurring patterns are
human-intended. Any session containing more than 50 queries is not included into the clean set
of query logs. This also reflects typical user behavior and allows our dataset to contain non-trivial
query sequences capturing realistic human interactions. This heuristic is applied uniformly for
both the datasets to sufficiently eliminate bot-generated sessions from our session logs.

Our data cleaning heuristics are similar to those used in Singh et al. [45]. Botlike patterns in-
volving repetition and recurrence can easily be learned by any ML baseline even with aggressive
sampling, thus bringing no significant insight about the best performing approach. It would be
unfair to the ML algorithms if their performance is compared upon the bot-generated sessions as
the conclusion drawn from such an experiment would not be meaningful. This is because, without
applying the pre-processing techniques, simply predicting that the next query will most likely be
the same as the current query gives an extremely high prediction quality to all the ML algorithms.

Our preprocessed query logs consist of 114,607 SQL queries and 43,893 clean sessions from
Course Website, while the Bus Tracker dataset contributes to 5,640 clean sessions containing 22,106
SQL queries. The raw datasets contain 214 M and 25 M queries, respectively. Table 1(a) contains an
SQL operator-wise distribution of various types of queries. We can notice that SELECT queries are
the most common followed by UPDATEs. A large percentage (98.58% from Course Website, 100%
from Bus Tracker) of the queries are associated with projection () lists followed by selection
(o) predicates (97.53%, 95.21%). The join () predicates are significant enough for Bus Tracker
(25.74%) but are limited for Course Website (3.66%). Sort/ORDER BY predicates (27.59%, 12.95%)
and aggregate operators involving COUNT (9.79%, 13.16%) are prominent in both the datasets.
LIMIT keyword occurs more often in Course Website (20.59%) as compared to Bus Tracker (0.85%).
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Table 1.

(a) Operator-wise Query Distribution

V. V. Meduri et al.

Fragment %Queries %Queries
(Course Website) | (Bus Tracker)

Query (DML) type = SELECT 88.93 86.0
Query (DML) type = INSERT 2.26 34
Query (DML) type = UPDATE 7.63 10.6
Query (DML) type = DELETE 1.18 0.0
Projection () 98.58 100
Selection (o) 97.53 95.21

Join predicates () 3.66 25.74
GROUP BY 0.004 0.0

Sort (ORDER BY) 27.59 12.95
Aggregate (MAX) 0.007 0.0
Aggregate (SUM) 0.034 0.0

Aggregate (COUNT) 9.79 13.16

LIMIT 20.59 0.854

(b) Query Fragments in the Embedding Vector

Fragment #Dimensions #Dimensions
Course Website Bus Tracker
Query Type, . 4 (SELECT/UPDATE/INSERT/DELETE) 4
Relation Listyec #Tables = 113 95
yec #Columns = 839 770
Aggroec #Columns x 5 = 4195 (AVG,MIN,MAX,SUM,COUNT) 3,850
Ovec #Columns = 839 770
GROUP BYyec #Columns = 839 770
ORDER BYyec #Columns = 839 770
HAVING e #Columns = 839 770
LIMITyec 1 1
>4 (JOIN)yec # {LeftTable.Column, RightTable.Column} = 92045 1,355
0.0Pyec # 0.Columns (=109) x 7 = 763 ( =, #, <, >, <, >,LIKE) N/A
0.CONSTyec #Equi-depth range bins for o.constants = 704 N/A
(c) Relation List (Table) Transition Statistics
Dataset No Change | Partial Change | Total Change
Course Website 16.63% 0.209% 83.15%
Bus Tracker 6.17% 21.54% 72.28%

Since a relation-list (tables) is the most vital component that may change across consecutive
queries, we collected the statistics about table transitions between successive queries in the clean
sessions. Table 1(c) shows that the relation list changes completely a majority of the times (83.15%,
72.28%) between successive queries. While Bus Tracker allows for partial overlap among the re-
lation list between consecutive queries (21.54%), Course Website has very few such instances
(0.209%). This tells that the prediction of the relation list has to be accurate as there could be a
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limited scope for partial rewards. In the next sub-section, we will describe the construction of
feature embeddings for the task of query fragment prediction.

3.2 Schema-aware Query Fragment Embeddings

We represent each SQL query by a one-hot encoded feature vector that is a bitwise representation
of the fragments that occur in the query. We create individual bit vectors for each fragment, the
concatenation of which produces a holistic fragment embedding for the entire query. The fragment
embedding has a fixed length uniformly for all the SQL queries, because the dimensionality of the
bit vector is dependent on the SQL semantics and the underlying database schema. The fragment
embedding qu, .. for a query qu is produced by concatenating the bit vectors of several fragments
in a fixed order as follows: quqyec. = Query Type,,, Relation List,ecIlyecAggryec vec GROUP BY e
ORDER BYyee HAVING e LIMIT e Mpec0.OPec0.CONST .

3.2.1 SQL Operator Fragments. Table 1(b) shows the number of bits pre-allocated to each frag-
ment. Query (DML) type is indicated by 4 bits, each of which stands for one of SELECT, UPDATE,
INSERT, or DELETE. Likewise, the relation list in the FROM clause can possibly include one or more
tables from the underlying database schema. The attributes participating in the projection list, se-
lection predicates, GROUP BY, ORDER BY, and HAVING clauses are captured using individual bit
vectors each of which has a dimensionality equal to the number of attributes |Attr| in the database
schema, indicating the #columns that these operators can be associated with. Aggr,. is a concate-
nation of five most common aggregate operators (AVG, MIN, MAX, SUM, and COUNT) and thus
has a dimensionality of |Attr| = 5 bits. LIMIT,.. records the presence of the LIMIT keyword in the
query and uses a single bit as it is not associated with a schema element. We capture both self-joins
and multi-table joins through possible join fragments that can occur in a query. A join fragment is
defined as the pair of columns that occur in a join predicate. Although the possible predicates can
be combinatorial in the number of attributes ('A’ trlC,), we reduce them to 92,045 and 1,355 for the
datasets by only allowing columns of the same data type to participate in a join predicate. To handle
the huge dimensionality of the join fragment vectors, we prune column pairs with mis-matching
data types from the candidate space of join predicates and also exclude arithmetic comparison op-
erators such as =, <, > from a join predicate. Nevertheless, we represent the comparison operators
along with the value range bins for constants in the selection predicates of a query.

3.2.2  Selection Predicate Constants and Comparison Operators. Contrary to the embedding bit
vectors for the operator fragments that record the occurrence of SQL operators with the schema
elements (tables or columns), the bit vectors for the comparison operators (¢.0OP,.) and constant
range bins (6.CONST,..) make certain assumptions. While the former are created in a generic
manner for the entire schema, in the case of the latter, we assume that we are privy to the set of
columns that occur in the selection predicates across the entire workload. Note that this assump-
tion is only to represent the comparison operators and constant ranges in the selection predicates.
To generate the bit vector for columns that participate in the selection predicates (0. ), we do not
make any assumptions. Of 839 columns in the database schema for Course Website, we notice that
109 columns participate in the union of selection predicates across the 114,607 queries. A selection
predicate can be denoted as {ATTR, OP, CONST-BIN} (see Section 1) from which the bit vector for
attribute, ATTR, is generic and gets a full dimensionality of the total #columns (839 for this dataset)
in the schema. To represent the comparison operators (=, #, <, >, <, > LIKE) we need 7 bits per
column that can potentially turn the dimensionality into 839 X 7 = 5,873, but we restrict the rep-
resentation to 109 columns, which allows our bit vector for o.OP,.. to contain 109 X 7 = 763 bits
instead. Along similar lines, we also represent the value range bins, CONST-BINS, for the constants
in the selection predicates on the set of 109 attributes as described below. As mentioned, we predict
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the constant bins and comparison operators only for the Course Website dataset but not the Bus
Tracker dataset due to the lack of availability of actual data (tuples) for the latter.

We partition the distinct values from each of the 109 attributes of the Course Website schema
that can possibly occur in the selection predicates of a query into 10 equi-depth range bins, where
depth denotes the tuple frequency of a distinct column value. For example, an attribute ranging
from 0 to 100 may get 10 range bins with one of the bins getting a value range of {0 — 40} if it is
terribly sparse as compared to the other ranges. We thus partition the total tuples into multiple
bins such that each bin approximately contains the same number of tuples. However, it should be
noted that if the cardinality of the entire set of distinct values from a column is lesser than 10, then
we produce fewer than 10 value range bins for that column. A constant in the selection predicate
of a query from a matching column may fall into one of these range bins or may not belong to
any of these bins in which case it will belong to an 11th default bin that is used to represent NULL
values. This is because some of the selection predicates check whether a column IS NULL or IS
NOT NULL, which we translate into “=" for the comparison operator and the “NULL” bin for the
constant. Out-of-range constants in a query that do not match any of the distinct values of a column
will be defaulted to the NULL bin. Although we anticipated the dimensionality of ¢.CONST,. to
be 109 X 11 = 1,199, we ended up with 704 bits for the constant value range bin vector because of
the inherent skew in the value distribution for some columns. Unlike Kipf et al. [23], who assume
uniform distribution for a column and represent constants as normalized values between 0 and
1 to estimate join cardinalities, we construct equi-depth range bins to be resilient to skew. While
the feature vectors in Reference [23] are specific to join cardinality estimation using RNNs and
the constants are only applicable to numerical data types, our proposed embeddings support the
prediction of an exhaustive list of SQL operators and constants of all data types, regardless of
the data size. In addition to this, we apply these embeddings upon a host of ML algorithms not
restricted to RNNs.

We present the creation of schema dictionaries in Online Appendix A.1. After we create the
schema dictionaries, we parse each query in the interaction workload using JSQLParser[1] and
obtain the operator fragments in the query. Our fragment embedding creation detects the pres-
ence of nested queries (with any number of levels) and adds additional selection or join predicates
to reflect the correlation between the outer query and the inner query. In the case of nested queries
containing IN and NOT IN, we add the corresponding selection predicate or join predicate frag-
ments depending on whether the sub-query is an expression of constant value list or an actual
SQL query containing a projection list. A limitation of our query fragment representation is that it
includes the fragments from both the outer and the inner queries into the same vector. To support
nested queries more accurately, we need to rewrite the nested queries into equivalent non-nested,
multi-join queries. On similar lines, we do not explicitly support user-defined functions. To use
our fragment embedding, the user-defined function needs to be inlined with the corresponding
database operators and re-written as an equivalent SQL query. This support requires more of an
engineering effort that we plan to include in the future.

For INSERT and UPDATE queries, the projection list is parsed as those columns into which
values are inserted or updated, while DELETE queries do not have a projection list. Once the parsed
fragments are obtained, we look up the bit positions for each fragment in the schema dictionaries
and set them in the embedding vector of the query. It is important to note that the embedding
generation time also adds to the response time as for each query, we create an embedding and feed
it to the query predictor in Figure 1 to predict the next query. However, we perform the embedding
vector generation in an offline step for the entire query workload, because all the ML algorithms
use the same set of embedding vectors and hence the pre-processing time for embedding creation
remains the same. Moreover, the sequence of queries the ML algorithms predict a successor for
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Fig. 2. Sustenance and singularity evaluation methods.

is exactly the same for all the approaches. We report the time consumption for offline embedding
generation in Section 5.4.1.

3.3 Evaluation Methods

Our evaluation is based on two kinds of experiments. To measure the effectiveness of the ML
models learned from offline training, we partition the entire set of interaction sessions from each
dataset into 80% train and 20% test sets as shown in Figure 2(a). After training a model on 80% of
the sessions, we evaluate its prediction quality w.r.t. next query (fragments) prediction upon the
remaining 20% sessions. We term this evaluation method as sustenance, because we check whether
a pre-learned model built from offline training can yield a sustained, high-quality performance in
predicting the successor for each query from the fixed test set of sessions. Likewise, we also apply
a prequential test-then-train model used to evaluate ML models in a streaming data scenario. We
use sliding windows as shown in Figure 2(b) to first test and then incrementally refine the model
upon a fraction of the query sequence that is made available. We assume that several sessions
are simultaneously active and are concurrently posing queries. Therefore the queries arrive from
a permuted sequence of sessions in each test-then-train episode. Without loss of generality, we
assume that the ith queries across all the sessions are executed before the (i + 1)th queries are
posed from any of these sessions. Note that the queries from concurrent sessions are streamed in
the exact same order for all the ML algorithms to ensure a fair comparison.

In Figure 2(b), at the beginning of each episode, an incoming batch of queries streams into the
next query predictor system from concurrent sessions. The batch size is configurable, and the
model that has been learned thus far is first tested on this fresh batch of queries. The testing
phase can be defined as predicting the next query for each query arriving from the currently
streaming batch. Once the batch is exhausted at the end of the episode, the query predictor ML
model learned so far is incrementally updated based on the current batch, before the next batch
of queries streams in. These experiments are titled as singularity, because we check whether a
convergent (singular) model of high quality can be learned at all, and if so, then we measure the
#episodes of training it takes before reaching such a self-managed state. We evaluate each ML
algorithm w.r.t. F1-scores computed from the overlap of both fragments and execution result set
of tuples between the predicted and actual next queries, training and test latencies as well as the
memory consumption.

4 COMPARED ML APPROACHES FOR NEXT QUERY PREDICTION

In this section, we describe the ML approaches that we adapt for query prediction, in the following
order: Query recommendation using collaborative filtering, temporal learning using RNNs, and
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Fig. 3. Cosine similarity-based collaborative filtering.

Exact Q-Learning, which is a reinforcement learning algorithm. We discuss how each of these ML
algorithms is applied to the task of next query prediction.

4.1 Collaborative Filtering

We implement two Collaborative Filtering (CF) approaches for query recommendation: One is a
Cosine similarity-based approach followed in QueRIE [13] and the other is a matrix factorization-
based approach from Eirinaki and Patel [14]. Note that we have enhanced these existing ap-
proaches w.r.t. both latency and memory consumption to be scalable over huge query logs. The
proposed optimizations are fairly generic and have been used for temporal predictors as well.

4.1.1 Cosine similarity-based CF. To adapt Cosine similarity-based CF for next query predic-
tion, we represent each user session as a summarized bit vector of query fragments that are present
among all the queries in the session. As mentioned in Figure 3, we obtain a session summary by
applying a bitwise OR upon the individual bit vector (fragment) embeddings of all the queries in
the session. Recall from Section 3.3 that we evaluate each ML algorithm upon two kinds of ex-
periments: sustenance (80% train, 20% test) and singularity (interleaved episodic test-then-train
approach used in streaming data scenarios). For both these experiments, our trained model is the
set of summaries built on the training sessions. In sustenance experiments, the train sessions are
strictly non-overlapping with the test sessions. However, for singularity experiments, the train
summaries keep growing with #episodes as more sessions and more queries from existing ses-
sions keep accumulating. Hence, in each episode, some of the streaming batch of queries may
belong to the set of ongoing training sessions whereas, others may belong to fresh sessions that
start from the current episode.

Given a test session TestSess 1 as shown in Figure 3, with “test1.length” #queries in it so far, to
predict the next query in the sequence, Query'®'!, we first compute the top-K sessions from the
training set whose summaries have the highest Cosine similarity with that of TestSess 1. Of these
top-K train sessions, we find the top-K queries whose fragment embedding bit vectors have the
highest Cosine similarity with the bit vector summary of TestSess 1. Following are a few important
things to take note of:

e While matching a test session with the training sessions, we avoid the comparison of a test
session with itself, as test and train sessions can be non-overlapping in streaming scenarios.
o Although the train session summaries are complete and are computed over all the train
sessions and queries seen until a given episode, identifying the top-K sessions and
top-K queries similar to a test session employs sampling. This is similar to QueRIE [13]
that deploys random sampling upon historical sessions to obtain a pool of candidate queries
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Fig. 4. NMF-SVD-based collaborative filtering.

from which top-K queries are recommended. The only difference is that in streaming sce-
narios, the sessions and queries get updated with time that necessitates the sampling to be
done before query prediction in each episode.

e For effective sampling, we keep track of the distinct queries (which have unique fragment
embedding bit vectors) in each session.

4.1.2  Matrix Factorization Based CF. We represent the historical (training) queries as a matrix
of |Train Sessions| X |Query Vocabulary| dimensionality, in which training sessions form rows and
distinct queries constituting the query vocabulary seen thus far indicate the columns of the ma-
trix. Similarly to Eirinaki and Patel [14], we use Non-negative Matrix Factorization-based Singular
Value Decomposition (NMF-SVD) [25] from the scikit library to decompose the matrix into two la-
tent factor matrices of dimensionalities [Train Sessions| X [Latent Dims| and |Latent Dims| X |Query
Vocabulary|, respectively, as shown in Figure 4. The original matrix contains 1.0 in specific cells to
indicate the queries that occur in each of the training sessions. Note that a distinct query from the
vocabulary represents a unique set of query fragments. Once we multiply the factored matrices,
the original matrix gets completely filled up where the cell entries represent the probability with
which a query (column) may occur in a specific session (row). As mentioned, in the case of suste-
nance experiments, train and test sessions do not overlap with each other. However, in singularity
experiments, there is a possibility that train and test sessions do overlap.

In Figure 4, TestSess 1 indicates a test session that is already present in the training set of
sessions. Because of the streaming nature of queries in the singularity experiments, new queries
are getting appended to that session. Let us assume that Query(k) and Query(n) along with a few
other training queries are already present in TestSess 1 and now we need to predict the next query
Query'et!. Since this is a row that is already present in the factorized and completed matrix, we
pick the top-K cells with the highest cell probabilities from the NMF completion as the possible
next queries. For TestSess 1, the top-K (k = 3) queries can be either Query(2) or Query(1) or Query
(n-1). In the case of singularity, the updated test session with the actual succeeding query eventu-
ally becomes a part of the updated matrix, toward the end of the test-then-train episode. Hence,
the matrix factorization and completion happens in each episode as a part of the training process.

TestSess 2, however, represents a test session that was unseen in the training set of sessions.
While this is possible in both streaming and non-streaming scenarios, this is more likely to happen
during the sustenance (80% train, 20% test sessions) experiments as the train and test sessions are
strictly non-overlapping. In such situations, we can notice that a query that occurs in a test session
can totally be from the training vocabulary of seen queries. Query(n+1) in Figure 4 represents
one such out-of-vocabulary query that occurs in TestSess 2. If we need to predict the next query,
Query!et2 for such out-of-vocabulary test session, then we cannot rely on this session alone as it
is not present in the completed matrix. To tackle this cold-start problem for out-of-matrix sessions,
we keep track of the summaries for a sample set of training sessions. Since a session summary is
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a bitwise OR of all the query embeddings from the session, Cosine similarity can be computed
between each sampled training session and the summary of the ongoing out-of-query-vocabulary
test session. The closest training session already in the matrix can be used to predict the top-K
next query candidates for the ongoing test session. In Figure 4, we find that TrainSess 2 is most
alike to TestSess 2, from which the top-K queries are suggested as the next query candidates for
TestSess 2. We sample session summaries to save on the computation of similar sessions.

4.1.3 Optimizations. We present the computational complexities of both the adaptations of col-
laborative filtering in Online Appendix A.2.1. To lessen the computational costs, we implement two
optimizations. These optimizations are generic and are used by temporal predictors as well.

e To simplify the computation of distinct queries during the training phase, we create a hash
map of key-value pairs in which the key represents a 256-bit secure hash encryption (SHA-
256) of each distinct query embedding and the value is a <sessionID,QueryID> reference
to the query embedding. The computation of distinct query embeddings compares only the
compact & unique SHA-256 key values instead of the embeddings that can be as long as
102,020 bits for Course Website and 9,155 bits for the Bus Tracker dataset (see Table 1(b)).

e We parallelize the prediction phase of the ML algorithms to be scalable to huge #sessions
and #queries, the details of which are given below.

For all the ML algorithms that we implement, the prediction (test) phase latency increases with
#queries and, hence, we parallelize the same. Python threads are I/O-bound and the Global Inter-
preter Lock allows for only one thread to be executed at any given point of time. Therefore, we
use multiprocessing to partition the test queries among several CPU-bound processes. By default,
the memory resident data structures are duplicated by processes. To avoid that, we use the multi-
processing manager to create shared data structures that can be accessed by several processes. As
shown in Figure 5(a), we use processes for inter-query parallelism and to predict the next query
that follows each incoming test query from an ongoing test session, the processes probe the shared
session summary samples to find similar sessions. We also allow for nested parallelism in which
the outer level uses threads for inter-query parallelism, and each thread in turn spawns several
processes for intra-query parallelism. These processes partition the session summaries and com-
pute the Cosine similarity between the ongoing session and the historical sessions in parallel. Once
all the child processes finish the probe within their respective partitions, they notify the parent
thread that computes the top-K similar historical sessions for a single test query. Typically, we use
nested parallelism only if a single level of multi-process parallelism is infeasible. This is because,
in the case of nested parallelism, speed-up comes only from the processes that are spawned by the
threads for intra-query parallelism, and not from the threads per se.
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Fig. 6. Recurrent neural networks for next query prediction.

4.2 Recurrent Neural Networks

RNNs [21, 36] are powerful temporal predictors, and, hence, we adapt them to the task of next
query prediction. Given an SQL fragment embedding for a query at timestep T;, the goal is to
predict the next query (fragment vector) issued by the user at timestep T, . Figure 6 illustrates
the training as well as the prediction (test) phases of this adaptation. Contrary to collaborative
filtering, RNNs are streaming friendly and are easy to train incrementally.

The training data for our adapted RNN is always fed as pairs of embeddings -<Query;,
Query,,, > from which Query; is treated as the query at the current timestep T; and Query;,,
is the query to be predicted from the next timestep T;,;. We also use a batch normalization layer
and drop-out regularization for stable predictions. The parameter settings for each ML approach
are discussed in Section 4.4. The prediction phase of RNNs can pick the top-K next query candi-
dates from the historical pool of queries seen so far. As our evaluation shows that historical RNNs
(RNN-H) are poor in prediction quality and latency, we propose “RNN-Synth” (RNN-S), which
synthesizes novel next queries.

4.2.1 Historical RNNs. As shown in Figure 6(b), the trained RNN Model is used to predict the
next queries to the input queries that are fed at the input layer from several instances of T;. We
use inverse binary cross entropy as the similarity function to compare the numerical output vector
produced by an RNN against the one-hot historical query embeddings and pick the top-K queries
with the least entropy. Also, we use random sampling similar to CF techniques discussed in Sec-
tion 4.1 to alleviate the latency associated with top-K next query detection. The only difference
is that CF techniques build their models that entirely depend on the session structure (Cosine
similarity-based CF uses session summaries as a model while NMF-SVD-based CF uses sessions
as rows of the matrix). Therefore, CF techniques use two-stage sampling to first select the sample
of sessions, from which queries are sampled again. In contrast, RNN models are session-agnostic
as their training data consists of <current query, next query> pairs. Thus, in this case, the sample
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Fig. 7. Recurrent Neural Networks (RNN-Synth) for Next Query Synthesis.

queries are directly picked from the entire set of distinct historical queries (which use SHA-based
optimization) regardless of the sessions they belong to. We speed up query prediction by using
nested parallelism.

We use Keras wrapper [9] with TensorFlow [2], which allows for sharing an RNN model among
several Python threads but not among various processes. Hence, the input queries are partitioned
among several threads (inter-query parallelism) and are simultaneously sent to the RNN model that
emits the predicted probabilistic output vectors. Each thread spawns several processes as shown in
Figure 6(b) that partition and probe the historical sample query embeddings to retrieve the top-K
queries with the least entropy for a single query (intra-query parallelism). As we will show in the
experiments, to tackle the shortcomings of historical RNNs, we propose RN N-Synth, which can
synthesize novel next queries of high quality while incurring minimal latency.

4.2.2  Synthesizing Next Query Fragment Vectors Using RN N-Synth. While the training phase
of RNN-Synth remains the same as that of historical RNNs as shown in Figure 6(a), the difference
is in the prediction phase. Instead of relying on historical query samples, RNN-Synth synthesizes
the next query (fragments) directly from the output probabilistic vectors. This requires the predic-
tion phase to infer the next query embedding, which is a multi-dimensional bit vector, from the
probabilistic output vector. There are a few challenges in achieving this.

e Converting a probabilistic vector into a Boolean vector requires setting a suitable probabil-
ity threshold. All the dimensions whose probabilities are above this threshold will have their
bits set to 1. However, in several output vectors, the highest probabilities can be lesser than
1.0 (around 0.7, for example), which necessitates different thresholds for different queries.

e It is not necessary that the Boolean vector obtained via thresholds corresponds to a mean-
ingful SQL query. We will need to make fixes to possible SQL violations that may arise. An
implicit requirement is that such fixes need to be made in real time with minimal latency.

Figure 7(a) shows the prediction phase of RNN-Synth in which N output probabilistic vec-
tors of Dim dimensions undergo three transformation steps to produce the next query embed-
dings. These are (a) output vector normalization, (b) top-K threshold application on the nor-
malized output vectors, and (c) fixing the SQL violations in the next query embeddings. For
output vector normalization, we transform each probabilistic dimension such that the least and
the highest values are 0 and 1, respectively. For each dimension index i ranging from 0 to Dim,
Output[i] = mg)igﬁ:gi;;‘gﬁgm%, where min(Output) and max(Output) denote the minimum and
maximum probability values from the output vector. This normalization step allows us to apply
uniform thresholds on all the test queries regardless of the original probability value distribution
within the output embedding vector. From the [0,1] range, we choose three discrete thresholds
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(0.8, 0.6, and 0.4) for top-K when K = 3. All the bits corresponding to dimensions whose output
probabilities exceed 0.8 will be set to 1 to obtain the top-1 result. Likewise, top-2 and top-3 predic-
tions are chosen by setting the bits for those dimensions whose output probabilities exceed 0.6 and
0.4, respectively. With increasing K, we discretize the [0,1] range at a fine granular level, thereby
obtaining more thresholds. For instance, if we were to choose the top-10 next queries, then we can
choose {0.0,0.1,0.2, . ..,0.8,0.9} as the thresholds if we want to be recall friendly. However, if we
want to be conservative and retain high precision, then we can set a minimum threshold of 0.35,
for instance, and choose {0.35,0.4,0.45, ..., 0.8} as the top-10 thresholds. In our experiments, we
set K to 3. Figure 7(b) shows how a threshold of 0.6 is used to convert a normalized output vector
into a multi-dimensional bit vector. The values highlighted in red exceed the threshold and are
hence set to 1 while the other dimensions remain unset at 0. As mentioned, this bit vector may not
represent a meaningful SQL query.

To regenerate the SQL query fragments from the bit vector and vice versa, we create a bi-
directional dictionary that stores the bit position and the corresponding SQL fragment as a
<key,value> as well as <value key> pair. Thus we can key in either the bit position or the fragment
to obtain its counterpart from the bi-directional dictionary. In the example shown in Figure 7(b),
to regenerate the SQL query from the embedding, we need several constant time O(1) forward
lookups on the bi-directional dictionary. However, we can notice a violation in the SQL fragments,
which is to have a Group By operation applied to the ID column from Josyen, table without having
ID as a part of the projection list. Now we have two options: either include Josyen,-ID column into
the projection list or drop the Group By operation on the same. While the former is a heuristic
aimed at enhancing recall, the latter enhances precision. Although we support both, we present
results using the former heuristic of adding missing fragments, which is better than dropping exist-
ing fragments. This is because the query embeddings are originally sparse, and dropping set bits is
going to make the predicted embedding even sparser while not significantly improving prediction
quality. To add or drop query fragments from the embedding, their corresponding bit positions
are required for which we make another O(1) backward look-up on the bi-directional dictionary
as shown in the figure. Following is a list of possible SQL violations that require similar fixes. Note
that we use the terms column and attribute interchangeably.

(a). Column-Table Violations: This is the case where for a column that is in the projection or aggre-
gate (AVG / MIN / MAX / SUM / COUNT) or GROUP BY or ORDER BY or HAVING clauses, we do
not find the table that it belongs to within the relation list of a query. To fix such a violation being
recall friendly, we add the missing table to the relation list of the query embedding. Alternatively,
a conservative precision-oriented fix would be to drop the column.

(b). Join Violations: If one or more tables for the columns participating in a join predicate are not
in the relation list of a query, then we add the missing tables to the relation list for enhanced
recall. For enhanced precision, we drop the join predicate. An example join predicate can be
LeftTable.LeftCol = RightTable.RightCol, and one or both of the LeftTable and the RightTable may
not be in the tables (relation list) of the FROM clause.

(c). Group By Violations: There are two possible kinds of violations. In the first variety, the projec-
tion list contains a column that does not belong to the group by list when a GROUP BY clause is
present. To fix this, we either add the projected column to the group by list for recall enhancement
or drop it altogether if we were to favor precision. The second type is a symmetric violation in
which a group by column neither belongs to an aggregate operation in the projection list nor is it
individually projected. We fix this by adding the group by column also to the projection list (for
recall) or dropping it from the group by operation (for precision).

(d). Having Clause Violations: If a column is present in the HAVING clause, but does not have an
aggregate operator associated with it, then we either add an aggregation to the column (for recall)
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or drop the column from the HAVING clause (for precision). The most likely aggregate operator
among the five operations (AVG / MIN / MAX / SUM / COUNT) with the highest probability in
the normalized output vector is added for enhanced recall.

(e). Selection Predicate Violations: A selection predicate fragment consists of three components:
a selection column, a comparison operation (one of =, #, <, >, <, >, LIKE), and a constant range
bin. The violations can also be of three kinds: (a) a selection column may not have either the
comparison operation or the constant range bins (or both) present in the query, (b) a comparison
operation occurs along with a selection column but the column or a corresponding constant range
bin may not be present among the set bits for the query embedding, or (c) a constant range bin
may have its bit set in the embedding when either the corresponding column or the comparison
operator (or both) are absent from the predicted selection predicate.

The fixes are fairly generic and symmetric across all the three possible violations. If the missing
element is a column, then we can recognize it unambiguously as the column that is associated with
the comparison operator and constant range bin. Instead, if the missing element is a comparison
operator or a constant range bin, then it is set to be the most probabilistic dimension and included
into the query fragments for recall enhancement. For example, a selection predicate embedding
sub-vector (oy.) may contain a bit set for an “Age” column from Josyen, table (Jospeny-Age) but
neither the comparison operator nor the constant range bin might have been set. These are picked
to be those fragments with the highest probabilities in the normalized vector, although they might
not have exceeded the threshold. Assuming an example threshold 0.6, a comparison operator <
and a constant range bin [15-20] may have respective probabilities 0.32 and 0.44 but these may
be the most likely bins if we must pick them for the age attribute. In such a case, the corrected
selection predicate in the predicted query contains the fragments {Josyeny-Age (selection column),
< (operator), [15-20] (equi-depth range bin within which the actual constant may lie)}. Alternatively,
to favor precision, the fragment causing the violation is dropped from the predicted embedding.
(). Null Vital Fragments: If there are no bits set in the predicted embedding for most vital fragments
such as DML type, tables (relation list), projection list, then we default them to the fragments within
the current query for which the next query is being predicted. In cases where the relation list is
present in the query but the projection list is NULL, we select the most likely column from one of
the relations into the projection list.

For each test query, we need to normalize its embedding, impose a threshold and fix the vio-
lations. While normalization and threshold application require a scan on all the Dim dimensions
in the embedding, fixes only require O(1) forward and backward look-up operations upon the bi-
directional dictionary for specific dimensions within the embedding whose count is far below Dim.
Therefore, prediction using synthesis-based RNNs is exceptionally fast. Another important thing
to note here is that while we use nested parallelism for historical RNNs, we do not use any paral-
lelism for synthesis-based RNNs. If we resort to inter-query parallelism using multiple processes,
then they make several copies of the RNN model (because Keras does not allow for model sharing
among processes) during the prediction phase that turns out to be memory intensive. Although
threads can share the RNN model produced by Keras, they are I/O-bound and cannot bring any
latency benefits for in-memory, CPU-bound tasks. Nested parallelism does not apply to synthesis-
based RNNs as there is not much scope for intra-query parallelism unlike historical RNNs. Also,
we do not use GPUs to speed up the training phase of RNNs to be fair to other ML algorithms that
cannot exploit GPUs. We use CPUs to parallelize the test phase of all the ML algorithms barring
RNN-Synth for the aforementioned reasons. The computational complexity of RNNs is discussed
in Online Appendix A.2.2, and more information can be found in Horne and Hush [17] and Zhang
et al. [53].
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4.3 Reinforcement Learning

We adapt the Exact Q-Learning algorithm as the reinforcement learning paradigm for next query
prediction. While we direct the reader to Russell and Norvig [43] and Watkins and Dayan [50]
for complete details of the algorithm, here we describe how we adapt the algorithm to predict the
next query embedding in a user interaction session. Exact Q-Learning uses MDPs to capture the
temporal dependencies among various states and materializes the long-term rewards (or penal-
ties), also called as Q-values, for all possible state transitions within a Q-Table. While the rows of
a Q-Table indicate all possible states, the columns in it represent the entire vocabulary of actions.
At each state, the action that an agent takes transitions it to a different state and also fetches an
instantaneous reward or a penalty from which its long-term reward is estimated. A long-term re-
ward or a Q-value indicates the sum of the instantaneous reward that the agent gets for taking the
action and the look-ahead reward that it gets for the optimal sequence of actions thereafter until
the goal state. Given a start state and a goal state, Q-Learning can find the optimal sequence of
<state,action> pairs (also called as policy) yielding the highest reward for the agent. Q-Learning
is useful for query fragment prediction for the following reasons.

(1) Although queries in an OLAP session follow a sequence, they have a significant difference
from traditional time-series applications. User interaction sessions against the database
are goal-oriented, and the queries are progressively steered toward interesting insights
drawn by the user at the end of the session.

(2) The query prediction algorithm needs to penalize intermediate queries that steer away
from the eventual goal query and reward those queries that quickly take a user toward
her goal.

(3) In contrast to applications such as games that have a fixed goal, each user session can have
a distinct goal query that makes the problem of query prediction significantly harder.

(4) Q-Learning can capture long-term, look-ahead rewards in the form of Q-values that can
estimate the cumulative effect of a transition from the current query to the next query
when these queries are represented as states in the Q-table.

Recent works such as Krishnan et al. [24], Li et al. [27, 28], and Liang et al. [29] use deep rein-
forcement learning for various database applications such as distributed stream processing, view
materialization, join order optimization, and database tuning. In contrast to exact Q-Learning, deep
reinforcement learning can only approximately learn the Q-values while avoiding the materializa-
tion of Q-table. In this work, we validate the applicability of the exact Q-Learning algorithm in its
most fundamental form to next query prediction as this gives an insight into the basic functionality
of the algorithm and how it optimally predicts the top-K next query candidates. Also, we empir-
ically show that for both the Course Website and Bus Tracker datasets, the Q-tables materialized
are small enough to be memory resident. For larger workloads than our datasets, the Q-table can
eventually be flushed to the secondary storage.

Our adaptation of exact Q-Learning for next query prediction has the following components:

e Learning agent: This is our next query predictor modeled as an RL agent that learns the
Q-table and predicts the next query.

e State/action space: The set of distinct embeddings of the training queries represents the
state/action space. Note that both the state and the action in the Q-table is a distinct training
query as shown in Figure 8(a). Query execution is the action performed and the state reached
corresponds to the query from the next timestep, and hence, we identify both the state
and the action space by the set of queries. Q-Learning can also support stochastic actions
in uncertain environments that require Partially Observable Markov Decision Processes.
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Fig. 8. Exact Q-learning for next query prediction.

MDPs are sufficient for query prediction, because the actions here are deterministic. The
environment is certain about the next SQL query (next state) that the agent goes to when
it makes a specific transition from the current SQL query (current state).

Environment: This hosts the reward function that captures the ideal temporal sequence of
queries.

Reward: This is issued by the environment as a response to an agent action to reflect whether
the the next query that is being chosen by the agent indeed succeeds the current query. We
support two types of reward functions—Boolean and Numeric—that will be detailed.

During the training phase, the RL agent populates the Q-table based on the temporal sequence
of queries from the training sessions. In sustenance experiments, we build the Q-table based on the
training sessions, whereas in the case of singularity, the Q-table is updated episodically based on
the incoming batch of test-then-train queries. As we can notice from Figure 8(a), the set of distinct
queries forms the query vocabulary. The Q-table that the RL agent builds is a square matrix and
has both its rows and columns pointing to the queries in the vocabulary. QRew;;; represents the Q-
value, which is the look-ahead long-term cumulative reward that the RL agent gets upon executing
Query; after Query;. Note that the Q-values are refined over time as the RL agent gets exposed to
more training sequences. Each time an RL agent sees Query; following Query;, it updates QRew;;
based on an equation called Bellman update (see Figure 8(b)). Since we only keep track of distinct
queries, the number of possible <Query;, Query;> query pairs is also limited that keeps the size
of the Q-table bounded as well. However, it is not feasible to encounter all possible pairs from the
Q-table within the training data. Also, we may not encounter each pair enough number of times
during training. This is because if we were to rely only on the temporal pairs from the training
data, then the Q-table would be very sparse. To make the Q-table dense and to enhance the effect
of the pairs seen during training, we apply a combination of tabular variants of two techniques
from the Q-Learning literature called experience replay and random action exploration.

4.3.1 Tabular Variant of Experience Replay and Random Action Exploration. To improve the
stability of training by learning the Q-values effectively, two prominent techniques called Ex-
perience Replay [44] and e-greedy random action exploration [35, 51] are available in the RL
literature. Experience replay periodically re-trains the RL agent upon the training experiences
(<Query;, Query;> query pairs in our case) it has encountered before. e-greedy random action
exploration ensures that the RL agent is also exposed to transitions it is likely to miss during
training. Therefore, for each state, instead of always training on the actions with the highest Q-
value, it also picks random actions to train upon, with a small (¢) probability. While both these
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techniques are frequently applied in Deep Q-Learning scenarios, we apply their tabular variants
to our Exact Q-Learning implementation. Deep Q-Learning uses a separate replay memory to store
the training transitions, whereas we already capture all possible transitions in a Q-table that makes
the application of these techniques easy and lightweight in our case. At the end of each training
episode (online test-then-train or singularity evaluation) or after offline training (sustenance), the
RL agent randomly samples several <state,action> pairs from the vocabulary and populates their
corresponding Q-values. This is equivalent to picking a random pair of distinct queries, check-
ing whether they succeed one another or not, and updating their Q-values based on the reward
function. If the queries in a sampled pair succeed each other, then it is equivalent to applying ex-
perience replay, as we would have encountered that pair during training. Instead, if the queries in
such a pair do not succeed each other, then it is equivalent to applying random action exploration
as that pair would not have been seen during training. Our € value is 0.5 as we equally bias toward
seen and unseen pairs from the training set of sessions.

These techniques reduce the sparsity in the Q-table and also improve the accuracy of Q-values.
Let us consider an example pair of successive queries <Q;, Q;> (i.e., j=i+1) and assume that the
current Q-value(< Q;, Q; >) is 1.0. If we randomly pick that pair again during experience replay, as
per the Bellman update equation, then the updated Q-value(<Q;, Q;>) will be 1.0 X & + (1-@) X
(instantaneous reward + y X maxy Q-value(< Qj, Q >)). Substituting 0.5 for both learning rate «
and discount rate y, and 1.0 for both the instantaneous reward and max; Q-value(<Qj, Qi >), the
updated Q-value(< Q;, Q; >) would be 1.25. Instead, if we pick a pair of queries that do not succeed
each other (random action exploration where j#i+1) with an instantaneous reward and current
Q-value(< Q;, Q; >) both of which are 0.0, then the updated Q-value(<Q;, Q;>) would be 0.0 X «
+ (1-@) X (instantaneous reward + y X max; Q-value(< Q;, Qi >)). Making the same substitution
for maxy Q-value(< Qj, Qi >) that is 1.0, we would get an updated Q-value(< Q;, Q; >) of 0.25. This
shows that whether the queries within the randomly sampled query pair succeed each other or
not and regardless of whether or not this pair was encountered during the training phase, there
will always be an update to the Q-value at the current state if the Q-value at the next state is
non-zero. This is because of the recursive definition of Q-values in the Bellman equation that
makes the Q-value at the current state dependent on the Q-value at the next state. Reinforcement
learning inherently captures the sequence information via a Q-table, and therefore, any additional
observations of already observed query sequences will further reinforce the Q-values.

4.3.2  Prediction (Test) Phase. Given a test query (TestQuery i) during the prediction (test) phase
as shown in Figure 8(a), to find its successor, the RL agent first checks if the query embedding for
TestQuery i exists in the vocabulary of distinct queries. Note that for such comparisons, we use
SHA-based optimizations from Section 4.1.3. If we do not find a matching query embedding, then
we compute the Cosine similarity of the test query embedding with the embeddings of all the
distinct queries in the vocabulary to find the most similar query. Once such a query is found in the
vocabulary that can act as a proxy to the test query, we find its top-K next queries with the highest
Q-values and return them as the successors to the test query. In the example shown in Figure 8(a),
Queryy, from the vocabulary is most similar to TestQuery i. Within the row for Query,, the highest
Q-value is for a transition to Query, that is returned as the top-1 successor of TestQuery i. For
higher values of K, we use a max-heap to return the top-K successors. Similarly to Figure 5(a),
we use inter-query parallelism to partition the test queries among several processes. Although
we can also allow for nested parallelism by partitioning the distinct queries for Cosine similarity
computation (intra-query parallelism), we found that inter-query parallelism is optimized enough
and finds top-K queries with minimal latency:.
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4.3.3 Reward Function. The reward function reflects the temporality among queries at each
timestep during a query session. Let us assume that the current user query is Query; at timestep

7;, and the RL agent, i.e., the next query predictor predicts a query Queryip:;sd for timestep 7j41.
As mentioned, we support two types of reward functions. For the Boolean reward function, if the
actual user query Query;*’", which is the ground truth, matches the predicted query Querym}d,
then the RL agent gets a reward of 1, else it gets a reward of 0. For Numerical reward function, we
return the Cosine similarity between the embeddings of Query:';" and Query]&e 4 as the reward to
the RL agent. Based on this function, we can understand that the instantaneous reward is a value
between 0 and 1. However, this is not true for the Q-value. This is because Q-values are cumu-
lative look-ahead rewards from a given state until the goal state. Q-values cannot be normalized,
because their absolute values need to be compared among several columns to predict the top-K

next queries.

4.3.4  Setting Learning Rate and Discount Factor. As shown in Figure 8(b), while navigating from
the start state denoting the first query in a user session until the goal state (G) that represents the
last query in the session, at any given intermediate state S;, the RL agent chooses an action (query)
that yields it the maximum cumulative future reward. There is an exploration vs. exploitation
tradeoff that we can notice here. The quality of an RL agent depends on the accuracy of the Q-
values that get refined with more learning episodes. We balance the exploration vs. exploitation
tradeoff by setting the parameters in the Bellman update [43] (Equation (1)) used for Q-Learning,

QRew;j;; = QRew;;(1 — @) + a * [rewj; + y * optRew(S;, G)], 1)

where « refers to the learning rate and y refers to the decay rate, also called the discount factor,
both of which lie between 0 and 1. If the RL agent chooses Query; to be executed after Query;,
then this decision fetches it an instantaneous reward that is summed to a discounted look-ahead
optimal reward obtained from the remaining queries until the termination of the session (goal
state) as illustrated in Figure 8(b). Note that if y is set to 0, then the RL agent chooses to execute
a query corresponding to S; after S;, instead of S;,;, based on the instantaneous rewards (0.5 > 0.3
from the figure). Instead, if y is set to 0.5, then we choose S;.1, which yields a curQRew(S;, aj.1) =
0.6, which is greater than curQRew(S;, aj) = 0.505. This allows it to capture the effect of cumulative
reward. However, a higher y than this will not only take a longer time to train but will also prefer
longer paths to the goal state. On similar lines, the value of « determines the extent to which the
value of QRew;; needs to be updated each time we encounter Query; (corresponding to state S; in
Figure 8(b)) after Query; that corresponds to S; in the figure. A higher value of « biases the Q-value
more toward the more recent executions of Query; after Query;, thus asking for more update steps,
whereas a lower @ does not refine the Q-table. Hence, we set both y and « to 0.5, which allows the
RL agent to explore just enough to reach an acceptable convergence to the right Q-values within
the Q-table and thereby make accurate action predictions (optimal exploitation) at a given state.
We present the computational complexity of Exact Q-Learning in Online Appendix A.2.3.

4.4 Parameter Settings

In this section, we discuss the parameter values that we set for each algorithm.
(a). Generic Parameters: There are a few parameters that are generic across all the ML algorithms.

e Episode Size - We set the #queries in a test-then-train singularity episode to 1,000. This was
set to keep the episode wide enough to get statistically significant test metric observations.
e Top-K - We set K to 3 across all the ML algorithms. This was empirically set to en-
sure that even the worst performing ML algorithm does not take longer than an hour
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per test-then-train episode of 1,000 queries (as mentioned above) to predict the successor
queries.

e Degree of Parallelism - We set the parallelism to 48 processes. This was set based on the
12 CPUs on our server that are hyper-threading enabled and allow for 4 virtual CPUs per
core. Also, note that we allow two modes of parallelism: single level of parallelism (inter-
query) and nested parallelism with both inter and intra query parallelism. In the former
case, we spawn 48 processes, whereas in the latter, we spawn 3 threads at the outer level
each of which in turn spawns 16 processes. So at any given moment, we do not have more
than 48 processes running in parallel. The #threads does not influence CPU time as they are
I/O-bound and the test phase of all the ML algorithms is CPU-bound.

e Sampling Rate - In the case of Cosine similarity-based CF, the model learned is a set of
session summaries. Therefore, to ensure that during the test phase, the top-K next queries
are picked from training sessions that are similar to the ongoing test session, we follow two
level sampling. We sample 1% of the training sessions at the outer level and we sample three
queries per session at the inner level. These parameters are empirically set to ensure that
CF techniques do not consume exceptionally long test times. Likewise, for NMF-SVD-based
CF, the model is a matrix whose rows represent training sessions. Here we sample 1% of the
training session summaries to facilitate quick comparison of an ongoing test session with
the historical sessions. For RNNs and Q-Learning, the trained models and the test phase are
not directly dependent on the session structure. Therefore, we randomly sample 10% of the
distinct queries from the training set for historical RNNs and Q-Learning. Synthesis-based
RNNss do not require sampling as their test phase does not depend on historical queries.

(b). Cosine similarity-based CF: We use inter-query parallelism with 48 processes to parallelize the
test phase of CF as it is more effective than nested parallelism.

(c). NMF-SVD-based CF: We set the number of latent dimensions during matrix factorization to
10% of the number of distinct queries, however not exceeding 100. The 10% limit is imposed when
the number of distinct queries is lesser than 100 during the initial singularity episodes. Other pa-
rameters include those we set for non-negative matrix factorization from the scikit-learn library.
We use “nndsvdar” as the random value initialization procedure for sparse matrices. Likewise, we
use multiplicative update solver that is more efficient and faster than coordinate descent. Remain-
ing NMF parameters are set to default values. We use inter-query parallelism with 48 processes to
parallelize the test phase of CF as it is more effective than nested parallelism.

(d). Recurrent Neural Networks: We run experiments with all the three variants of RNNs: vanilla
RNNs using simple backpropagation, Long Short Term Memory (LSTM), and Gated Recurrent
Units (GRU). For all these three variants, we use a single hidden layer containing 256 hidden nodes.
We use 40 epochs during RNN training and dropout regularization that turns off 50% of the hidden
nodes during training. As mentioned, while we use 3 threads each spawning 16 processes for
historical RNNs, we use single-threaded implementation for synthesis-based RNNs. Other neural
network specific parameters such as activation functions were discussed in Section 4.2.

(e). Q-Learning: As mentioned, we use 0.5 for both learning rate («) and decay rate or discount
factor (y). We sample 100 random pairs of queries from the distinct query vocabulary for experi-
ence replay and random action exploration. We use inter-query parallelism with 48 processes to
parallelize the test phase of Q-Learning, as it is more effective than nested parallelism.

5 EXPERIMENTS

All our experiments were conducted on a machine running Ubuntu 16.04 OS, with a 12-core
3.0-GHz Xeon E5-2687WV4 processor, 120-GB RAM, and 4.0-TB hard disk. Hyper-threading is
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Table 2. Sustenance: Train and Test Sessions and Query Splits
Dataset #Train Sessions | #Train Queries | #Test Sessions | #Test Queries
Course Website 35,115 91,385 8,778 23,222
Bus Tracker 4512 17,430 1,128 4,676

Sustenance - Avg Quality Measures
(Course Website)

Sustenance - Train and Test Times (secs) Sustenance - Avg Mean Reciprocal Rank
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Fig. 9. Sustenance experiments (course website): Quality and time measures (80% train, 20% test).

enabled with four virtual CPUs per core that results in 48 CPUs in total. We implemented em-
bedding creation in Java using JSQLParser and the next query prediction framework in Python
because of the extensive library support that exists for Python from scikit (for NMF-SVD-based
CF) and Keras/TensorFlow (for RNNs). Cosine similarity-based CF and Q-Learning were imple-
mented from scratch in Python. We plan to make the source code available on https://github.com/
DataSystemsLab/SQLPredictor in the near future.

Our experimental section is organized as follows: First, we discuss the results of sustenance
(80% train, 20% test) experiments followed by those from singularity (incremental test-then-train
in a streaming scenario) experiments over both the Course Website and the Bus Tracker datasets.
Upon each dataset, we present the operator-wise breakdown of the sustenance results. For details
about sustenance and singularity evaluation methods, refer to Section 3.3.

5.1 Results of Sustenance Evaluation

As discussed in Section 3.3, we include this set of experiments under the sustenance category, be-
cause we train each of the compared ML algorithms offline on 80% of the total sessions. Upon un-
dergoing such extensive training, we evaluate if the learned ML models can demonstrate sustained
high-quality performance over a held-out test set of 20% sessions. As mentioned in Section 3.1.1,
there are 43,893 clean sessions consisting of 114,607 queries in the Course Website dataset and
5,640 clean sessions comprising 22,106 queries in the Bus Tracker dataset after applying the ses-
sion cleaning heuristics. Note that in Table 2 presenting the number of test and train sessions as
well as queries, the session splits maintain the 80% train, 20% test proportion whereas the query
splits need not exactly maintain that ratio as different sessions may contain variable #queries. From
the test query count presented in the table, we need to discount the last query in each session, be-
cause the successor is not predicted for it. Therefore, the number of test queries for which the next
query is predicted is 14,444 for Course Website and 3,548 for Bus Tracker.

5.1.1 Quality and Latency Metrics. Figures 9 and 10 present the average test prediction quality
and latency of all the ML algorithms on the Course Website and Bus Tracker datasets, respectively.
We plot the algorithms with the following abbreviated names in the same order in each figure:
Q-Learn (for Q-Learning), RNN-S, CF-SVD (for NMF-SVD-based CF), Cosine similarity-based CF
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Fig. 10. Sustenance experiments (BusTracker): Quality and time measures (80% train, 20% test).

(CF-Cos), and RNN-H. We sorted the algorithms based on their decreasing order of performance in
a majority of experiments. The primary takeaways from the F1-scores in Figures 9(a) and 10(a) are
as follows: Exact Q-Learning consistently outperforms all other ML algorithms closely followed
by synthesis-based RNNs, thus showing the effectiveness of using temporal predictors for next
query prediction task over using query recommender systems.

CF-Cos consistently performs poorly, as it picks the next queries totally from the sampled
training data. CF-SVD, however, relies on sampling only to identify similar training sessions to
the ongoing test session. It picks the next query from the completed matrix that can assign a
similarity score even to those queries that have very few historical occurrences thereby handling
sparsity. CF-SVD captures the essence of session similarity more effectively than CF-Cos instead
of using direct Cosine similarity score computed between sessions. Even then, CF-SVD falls short
of temporal predictors while performing better only on the Bus Tracker dataset as compared to
the Course Website. This is because Bus Tracker has a fairly small amount of possible next query
pairs, i.e., 625 from 25 distinct query embeddings learned during training, as compared to Course
Website that has 501,264 possible pairs generated from 708 distinct trained query embeddings. This
makes Bus Tracker an easier dataset even for recommender systems that are temporality agnostic.

Similarly, RNN-Synth consistently outperforms historical RNN thereby demonstrating the
power of synthesizing novel next query embeddings over picking a historical query that has the
least entropy with the predicted output vector. This is achieved by synthesis because of its ability
to identify the fragments that occur in the next query based on the probabilities of various dimen-
sions in the output vector emitted by the RNN. Instead, RNN-H relies on least entropy heuristic
that often picks historical queries that have as few bits set as possible. This is because entropy
is least when only those dimensions are set that have the highest confidence. Therefore, RNN-H
can predict the DML type of the next query accurately as it tends to be “SELECT” for most of the
workload. The most surprising result comes from Q-Learning that achieves a test F1-score of 0.95
on Course Website and 0.98 on Bus Tracker. This is plausible because of Exact Q-Learning that
accurately learns the rewards and penalties for all possible pairs of <current query, next query>
temporal sequences that occur during the training phase, into a Q-table. By default, we use the
numerical reward function during the training phase for Exact Q-Learning that rewards partially
overlapping predictions of next queries over totally penalizing them.

Besides F1-score, we also measure the average Mean Reciprocal Rank (MRR), which is defined
aS Rariorihe MOS: Natching Query 10 identify the effectiveness of the top-K next query candidates pre-
dicted by each ML algorithm. The MRR of RNN-Synth is >0.8 on both the datasets (see Figures 9(c)
and 10(c)). This means that from the top-3 results, the topmost result has the highest similarity
with the ground truth. Likewise, the MRR of Q-Learning is high on Course Website, although
it drops to 0.7 on Bus Tracker. The MRR of CF-SVD and RNN-H are low on both the datasets.

ACM Transactions on Database Systems, Vol. 46, No. 1, Article 4. Publication date: March 2021.



4:28

Quality of QL Variants
(Course Website)

Train & Test Times (secs)
site)

Quality of RNN Variants
(Course Website)

V. V. Meduri et al.

Train & Test Times (secs)
of RNN Variants (Course Website’

of QL Variants (Course Web:
g B

0.6

Time (secs)
Time (secs)

0.4

0.2

< 4
g 4
g 4
g 4

4
b

4
b
£ 4
b
g 4
g 4
g 4
g 4

4
b

]
>

4

p
p
p
p
)
)
p
p
p
p
b
i
£

0.0 x o
QL-Numeric QL-Boolean

55 F1-Score Precision B3 Recall

(a) QL Variants (Quality)

O RNN-Synth
B Train

LSTM-Synth  GRU-Synth

B Test

QL-Boolean — 0-0 NN Synthy
& Test Em8 F1-Score

(b) QL Variants (Time) (c) RNN Variants (Quality) (d) RNN Variants (Time)

QL-Numeric
EEE Train

LSTM-Synth
Precision

GRU-Synth
B0 Recall

Fig. 11. Sustenance experiments (course website): Variants of Q-learning and RNN.

Quality of RNN Variants
(Bus Tracker)

Train & Test Times (secs)

Train & Test Times (secs
i ¢ ) of RNN Variants (Bus Tracker)

of QL Variants (Bus Tracker)

Quality of QL Variants
(Bus Tracker)

Time (secs)

SR N
o 8 & 8 B
g 8 8 8 &

£
[

GRU-Synth
XX Test

ynth LSTM-Synth
EwE Train

O'RNN-S,

QL-Numeric
EE8 Train

(b) QL Variants (Time)

X3 Test

ic
888 Precision

1-Score ©x3 Recall

(a) QL Variants (Quality)

&8 F1-Score

(c) RNN Variants (Quality) (d) RNN Variants (Time)

8888 Precision XX Recall
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Surprisingly, CF-Cos achieves a near 1.0 average MRR on both the datasets. Upon examining its
predicted next queries, we found that in several cases, all the predicted next queries are equally bad,
and by default CF-Cos picks the first query from top-3 for the computation of test F1-score. Thus,
it achieves the highest MRR purely from serendipity. The latency results in Figures 9(b) and 10(b)
contain some interesting patterns. The most interesting result is that RNN-Synth, despite having a
single-threaded prediction phase, manages to achieve the best test latency on Course Website that
is the larger dataset. This observation does not hold on Bus Tracker, because it has relatively low-
dimensional embeddings, and other approaches outperform RNN-Synth during test phase. Overall,
Q-Learning achieves the least cumulative train & test time on both the datasets and emerges the
overall winner on both quality and latency. Note that we use the same degree of test phase par-
allelism for all the approaches barring RNN-Synth, and the training phase remains unparallelized
for all of them.

We compare the effectiveness of the Numeric and Boolean reward functions that we use to
train Q-Learning. While there is not much difference between both the QL variants in the case of
Course Website (Figure 11(a)), there is a noticeable difference in the test F1-scores upon the Bus
Tracker dataset (Figure 12(a)). This can be attributed to the fact that in the Course Website dataset,
there are more distinct embeddings, and hence there are more unambiguous distinct sequences of
<current query, next query> pairs in the corresponding query logs. In contrast, the small number
of distinct embeddings in the Bus Tracker dataset indicates that a particular query embedding is
often followed by different next queries in different sessions. For example Query; may be followed
by Query; in a particular training session, whereas in a different training session Query, may be its
successor. Capturing all such possible sequences unambiguously is easier using a Numeric reward
function as it computes the reward based on the Cosine similarity between a predicted next query
and the ideal successor during the training phase. A Boolean reward function is comparatively
more rigid and less flexible in capturing all these nuances. Another striking observation is that Q-
Learning consumes a higher test time than train time for Course Website (Figure 11(a)), whereas
the training time is higher for Bus Tracker (Figure 12(a)). This is because the training phase of Q-
Learning builds the Q-Table, and the time consumed in populating the Q-Table is only dependent
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on #queries in the training sessions. However, the test time is not only dependent on the number
of test queries but also on whether or not these test queries are always found in the pre-built Q-
Table. When the query vocabulary is small, more often than not, every test query is found in the
Q-Table and all that needs to be done to find a successor query is to perform a constant time look
up on the row corresponding to the matching query. This is possible in the case of Bus Tracker but
not for Course Website. Therefore, the test time is longer for the Course Website dataset, because
for each test query that is not found in the Q-Table vocabulary, a comparison needs to be done
with the entire query vocabulary to find the closest match. Also, the Cosine similarity computation
takes longer for Course Website queries due to their high-dimensional embeddings compared to
Bus Tracker.

As described in Section 4.4, we experiment with three flavors of synthesis-based RNNs. While
the vanilla variant of RNN-Synth uses standard backpropagation, LSTMs and GRUs use additional
memory units to capture the long range dependencies in sequence prediction. An example to such
a dependency in natural language sentences can be a noun (could be a male/female/neutral gen-
der) and a pronoun (can be he/she/it) that occur at different parts in a sentence, yet semantically
connected. In next query prediction using RNNs, such dependencies translate to a particular frag-
ment in the initial dimensions of a user query being semantically connected with another fragment
that is present at a later dimension within the query embedding. Such long range dependencies
may exist, but we did not notice any benefit in using LSTMs or GRUs over RNNs. As shown in
Figure 11(c) and (d), upon the Course Website dataset, LSTMs and GRUs consume slightly more
time to train larger models with additional parameters and logic gates than standard RNN vari-
ants, while also proving to be worse on test F1-scores. A consistent behavior is also observed on
the Bus Tracker dataset (see Figure 12(c) and (d)), although the quality of LSTMs and GRUs is not
worse than that of RNN-Synth unlike the case of Course Website dataset. To examine the effect of
training LSTMs on query sequences instead of <Current Query, Next Query> pairs, please refer to
Section 5.3.4.

5.1.2  Memory Consumption. All the ML algorithms that we adapted for next query prediction
load the entire set of query embeddings into main memory. Thus, all other data structures that
they create only use references to the query embeddings without having to replicate them. As
mentioned, the Course Website dataset contains 114,607 queries each of which has a 102,020 bit
long embedding. Likewise, the Bus Tracker dataset has 22,106 queries whose embeddings are 9,155
bits long. We use bit vectors from the PyPi library (https://pypi.org/project/BitVector/) to represent
the embeddings that consume 1.46 GB of main memory for Course Website and 25.29 MB for Bus
Tracker. Other in-memory auxiliary data structures include <sessionID,QueryID> references to
the query embeddings. The cumulative base memory usage for in-memory embeddings including
such data structures is 3.1 GB for Course Website and 414.39 MB for Bus Tracker.

Table 3 lists the individual memory overhead that comes from the data structures created by each
of the ML algorithms for next query prediction. This is in addition to the base memory required
by the query embeddings as listed above. As we have described in Section 4, each ML algorithm
generates distinct queries from the training set. The collection of distinct queries is also referred
to as query vocabulary. Similarly, we also create session dictionaries at train time that are <key,
value> pairs of the sessionID and the last queryID from that session. This is essential for all the
algorithms to know that there is no need to predict the next query for the last query in a session.

As we can notice from Table 3, Q-Learning consumes the least amount of memory, because
its Q-Tables are not that huge. This is because of the number of distinct queries that regulate
the size of the table. There are 708 distinct query embeddings for Course Website and 25 for Bus
Tracker, thereby leading to 501,264 cells and 625 cells respectively in the Q-Tables. On similar lines,
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Table 3. Sustenance Experiments: Memory (MB) Overhead for ML Approaches

Memory (MB) | Memory (MB) | Memory (MB) | Memory (MB)
Approach Data Structure (Breakdown) (Total) (Breakdown) (Total)
Course Website | Course Website | BusTracker BusTracker
Query Vocabulary 0.19 0.008
Q-Learn Session Dictionaries 3.989 20.88 0.305 0.34
Q-Table 16.7 0.028
Query Vocabulary 0.19 0.008
CF-Cos Session Dictionaries 3.989 0.305
X 21.57 2.07
Session Samples 11.153 1.164
Session Summaries 6.236 0.593
Query Vocabulary 0.19 0.008
CF-SVD Session Dictionaries 3.989 0.305
Session Summary Samples 0.062 830.2 0.006 4.77
Sorted Session Keys 1.139 0.149
Matrix Factorized 824.82 43
Query Vocabulary 0.19 0.008
RNN-H Session Dictionaries 3.989 0.305
) 423.59 142.35
Sampled History 0.152 0.007
Model 419.26 142.03
Query Vocabulary 0.19 0.008
RNN-S Session Dictionaries 3.989 0.305
e X 425.86 143.15
Schema Dictionaries 242 0.809
Model 419.26 142.03
Query Vocabulary 0.19 0.008
GRU-S Session Dictionaries 3.989 0.305
L. . 844.8 285.4
Schema Dictionaries 2.42 0.809
Model 838.2 284.28
Query Vocabulary 0.19 0.008
LSTM-S Session Dictionaries 3.989 0.305
T 1054.28 356.52
Schema Dictionaries 2.42 0.809
Model 1047.68 355.4

Cosine similarity-based CF only stores the bit vector summaries for 43,893 and 5,640 sessions from
both the datasets. Note that the session samples require more memory than the summaries for all
the sessions. This is because the session samples for CF-Cos also contain the sampled queries
per session (recall the two level sampling we described in Sections 4.1.1 and 4.4). In the case of
CF-SVD, we can notice a significant difference in the total memory consumption between Course
Website and Bus Tracker. This is because of the difference in the dimensionality of the matrix that is
factorized for each dataset. As mentioned in Section 4.1.2, the rows in the matrix represent sessions
while the columns represent the query vocabulary. Both the #sessions and #distinct queries in
Course Website are larger than those from Bus Tracker. Another interesting observation here is
that the size of the matrix for CF-SVD is much larger than the size of the Q-Table created by Q-
Learning. Although the #columns for both Q-Table and CF-SVD matrix are same as the number of
distinct queries, the difference lies in the #rows. The #sessions (rows in CF-SVD matrix) is much
higher than #distinct queries (rows in Q-Table) in both the datasets.
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Fig. 13. Course website: Fragmentwise next query prediction quality measures.

Last, among the several variants of an RNN, historical RNN that predicts from query logs has
a comparable, albeit slightly lesser memory consumption than its synthesis counterpart, RNN-
S. This is because the Keras RNN models learned by both these adaptations consume the same
memory but the difference is in the auxiliary data structures they create. While RNN-H (histori-
cal RNN) contains references to the sampled queries from which it picks the top-K next queries,
RNN-S materializes a bi-directional schema dictionary in memory using that it fixes the SQL vi-
olations in the synthesized top-K next queries. However, it is important to note that the memory
overhead for such schema dictionary is as low as 2.42 MB for Course Website and 0.8 MB for the
Bus Tracker dataset, for the constant time fixes and synthesis that it supports. We also included
the memory consumed by the synthesis-based variants of RNN such as GRU and LSTM. Note that
the Keras/TensorFlow model generated for GRU-S is larger than that of RNN-S while the model for
LSTMS-S is the largest. The reason for this is that GRU uses a forget gate that is an additional com-
ponent not existing in vanilla RNN, to capture long range dependencies among the input query
fragments. Although GRU models consume more memory, such expense does not translate into
higher prediction quality as we have observed in Section 5.1.1. LSTM is an advanced variant that
uses more gates than a GRU does (a forget gate is replaced with an update gate and a reset gate)
and has more parameters that makes its models even larger.

5.1.3  Fragmentwise Quality Breakdown. To understand how the predictive ability of the ML
algorithms w.r.t. each fragment influences the overall next query prediction as a whole, we present
a fragmentwise breakdown of the prediction quality in Figures 13 and 14. Note that the training
and testing is still done on the query as a whole and not on individual fragments, as this gives a
clear idea of how important each fragment is in predicting the overall query accurately.

As we can notice in Figures 13(a) and 14(a), almost all the algorithms perform well with a test
F1-score of 0.8 or above in predicting the DML type (SELECT / INSERT / UPDATE / DELETE) of
the next query. This is because up to 89% (Course Website) and 86% (Bus Tracker) of the queries
are of SELECT type (see Table 1(a)). This bias thus enables even the poorly performing algorithms
such as CF-Cos and RNN-H to have such a high predictive capacity on DML type. Note that the
test F1-scores upon relation list, projection list and selection predicates maintain the same relative
ordering among the various ML algorithms as they do on the entire query prediction as a whole.
We term such query fragments as Bellwether! fragments, meaning that the predictive behavior

IThis is a frequently used term in election outcome analysis to identify those Bellwether constituencies that locally obtain
a victory pattern among the political parties that is the same as the general outcome trending across the entire nation.
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Fig. 14. Bus tracker: Fragmentwise next query prediction quality measures.

of an ML algorithm w.r.t. them is indicative of its overall predictive ability. This happens because
every query has a relation list and at least 95% of the queries contain selection predicates and pro-
jection lists (Table 1(a)). So these fragments have a huge weightage in predicting the next query.
Conditional selection in Figures 13(e) and 14(e) evaluates how well an ML approach can predict the
selection predicates given that the relation list was accurately predicted. This is studied to under-
stand how correlated the predictions are upon relation list and selection predicates. Regardless of
how poorly an ML approach predicts the relation lists, we notice that in a majority of cases when
it gets (at least a subset of) the relation list right, it also manages to predict the corresponding se-
lection predicates accurately. Note that as we discussed in Section 3.2.2, a selection predicate refers
to a column participating in a WHERE clause, a comparison operator and an equi-depth constant
range bin for the column. This behavior can be attributed to the intrinsic correlation between the
relation lists and selection predicates and the fact that up to 95% of the queries contain selection
predicates.

In contrast to selection predicates, join predicates are scarce in Course Website (3.66%), and
they are of a moderate percentage (25.74%) in the Bus Tracker dataset. Surprisingly, even though
all other ML approaches including synthesis-based RNNs fail to capture them, Q-Learning can
predict them with a test F1-score of 0.8 on Course Website and almost close to 1.0 on Bus Tracker.
This happens because Q-Learning learns the dependencies among queries as a whole using Markov
Decision Processes. This means no matter how rare a particular fragment is, as long as it gets the
entire next query right, that automatically includes the rare fragments. In stark contrast, RNNs
learn the individual weights of each fragment in the next query and not the query per se. This can
be ineffective when the inherent occurrence percentages of some fragments is very low. Another
important thing to notice is that CF-SVD also performs well in the case of rare fragments, especially
for JOIN, ORDER BY, and COUNT in the case of Bus Tracker. This can be explained by the fact that
the number of columns in the matrix for Bus Tracker is as low as 25. Hence, finding similar training
sessions to the ongoing test session is easy under such low dimensionality, even with sampling.
Note that we do not present results for GROUP BY, MAX and conditional join predicates for both
the datasets. Likewise, we do not present the results for COUNT and LIMIT for Bus Tracker. This
is because all the ML algorithms get a test F1-score of 0.0 on these fragments following their
extremely low occurrence percentages.

5.2 Results of Singularity Evaluation

Figures 15 and 16 show the properties of the Course Website and Bus Tracker datasets w.r.t. the
singularity experiments. We notice that the session length distributions of the clean query logs
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Fig. 16. Singularity (dataset properties, BusTracker): Session and query distribution.

from both the datasets have long tail property with only a few sessions being long and a majority
of the sessions being short. With respect to the number of queries that stream in, each episode
strictly has 1,000 queries except the last episode that may contain the left over queries. However,
in Figures 15(b) and 16(b), we notice that several episodes have fewer than 1,000 queries. This
happens because, in each episode, there can be several queries marking the end of the session and
such queries are discounted as they do not have a successor. Thus, the query count plotted in these
figures only shows the number of queries in each episode for which the ML algorithms predict
the next query. The query progression plotted in Figures 15(c) and 16(c) shows that the arrival
rate of new queries within the concurrent sessions is low and sparse during the several initial
episodes (episode length = 1,000 queries), whereas the queries start changing more frequently
toward the later episodes thus indicating that prediction of the next query during the later episodes
is harder as compared to prediction during the initial episodes. While all the “DELETE” queries
typically occur during the first 40 episodes in the Course Website dataset, insertions and updates
become fewer during the later episodes beyond 80. However, the “SELECT” queries approximately
maintain the same frequency over all the episodes. While “DELETE” queries do not exist in the Bus
Tracker dataset, “‘UPDATE” queries show some fluctuation and become fewer in the later episodes
of concurrent sessions. “SELECT” and “INSERT” queries, however, maintain a reasonably high
frequency during each episode all the way until the end.

As we have mentioned in Section 3.3, in singularity experiments, queries keep streaming from
concurrent sessions in an episodic manner and the ML algorithms predict the next query for each
query that streams in (as long as it is not the last query from a session). Toward the end of the
episode, the learned model so far gets updated based on the queries from the episode. The purpose
of these experiments is to test if a model can achieve a self-managed behavior or a singular
point beyond which it consistently predicts the next queries accurately. Figures 17(a) and 18(a)
present the average test F1 scores of various ML algorithms in each episode w.r.t. next query
prediction. We can notice that in the case of Course Website, both Q-Learning and RNN-Synth
show a monotonically increasing behavior in prediction quality although with some fluctuations
toward the later episodes. This is because queries 3 to 49 arrive at a really rapid rate in those
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later episodes, and it presents a challenge to the algorithms in predicting the next queries. In a
general sense, although we cannot say that the algorithms strictly achieve singularity, both these
temporal predictors show some consistency in yielding high test F1 scores with more episodes.

Another interesting thing to note here is that until episode 42, all the concurrent sessions stream
in their first query. Note that both the RNN variants, RNN-S and RNN-H, consume the training
data in pairs of <current query, next query>, and they cannot make any predictions until 42nd
episode. This is because, during that phase, there are no such training query pairs to learn a model
from, and thus both RNN-H and RNN-S yield a 0 test F1 score. In contrast to these algorithms,
Q-Learning and CF variants start producing test F1-scores despite them not being high, right from
the first episode. This is because the Q-Table and session summaries start getting populated from
the very beginning. Q-values are initialized to 0 until the second query is observed; but a ran-
dom prediction can still happen. We present the query progression on the quality plots to enable
a better understanding of how the test F1 score patterns correlate with the arrival rate of queries.
The test F1-scores in the case of Bus Tracker dataset show a fluctuating, erratic behavior because
of the small size of the dataset. There is no real convergence point for any of the algorithms ex-
cept for Q-Learning that manages to again yield consistently high test F1-scores. Note that the
test data here changes for each episode unlike the sustenance experiments that have a held-out
test set. Another reason for the fluctuating F1-scores is that the Bus Tracker dataset has very few
distinct embeddings. This means that the same query embedding may have different succeeding
queries across different episodes, thus rendering the sampled sessions or fragment weight learning
ineffective for both CF and RNN algorithms respectively. Q-Learning using numeric reward func-
tion captures these nuances more effectively and can thus adapt to the shifting successor query
patterns in each episode.
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Figures 17(b) and 18(b) present the response time in each episode for each ML algorithm. Note
that the response time includes the next query prediction latency for all the queries in that episode
summed to the re-training time of the model toward the end of the episode. We can observe a strict
correlation between the query distribution in Figures 15(b) and 16(b) to the response times on those
datasets. For instance, the latencies for Course Website see a decline between episodes 42 and 92
before they rise thereafter. This is because the number of queries that have successors drops in
that interval based on Figure 15(b). Likewise, on the Bus Tracker dataset, we notice a decline in
latency at episode 12 when the query count decreases (see Figure 16(b)). We can observe that the
response time for RNN-H is the worst and keeps growing with more episodes as the sampled his-
tory of queries keeps growing. This growth is not that sharp for CF-Cos, as it follows a two-level
sampling where session samples gradually increase with time at a higher rate than queries. Still,
we can notice a monotonically increasing response time, because the re-training for CF algorithms
is cumulative and not incremental with each episode. RNN-Synth and Q-Learning are both capable
of incremental training and hence, their response time grows the least. Consistent with our suste-
nance latency observations, Q-Learning consumes the least latency for singularity experiments as
well. This is because its cumulative train and test time only consists of Q-Table construction and
Q-Table look-ups both of which can take constant time for a fully materialized Q-Table, especially
if the query vocabulary within an episode already exists in the Q-Table. RNN-Synth also requires
constant time prediction but it is not parallelized. Even then, its test time is actually lesser even
than Q-Learning. The reason RNN-Synth comes next to Q-Learning is its longer train time as com-
pared to Q-Learning. In the case of Bus Tracker, the query embeddings are of low dimensionality
and the query vocabulary is small. This results in parallelized test phase of CF algorithms outper-
forming single-threaded RNN-Synth on latency. We have explained the reasons for not being able
to parallelize RNN-Synth in Section 4.2.2. RNN-H still consumes the highest response time also
for the Bus Tracker dataset owing to its long training and test latencies.

5.3 Query Re-generation and Result Comparison

In this section, we evaluate the performance of the ML algorithms w.r.t. the execution results
of the predicted next queries and how they compare to the expected result set of tuples from
executing the ideal successor queries. Among the two datasets, Course Website has underlying
data, whereas the Bus Tracker dataset [30] only provides the schema but not the data. Therefore,
our experiments on evaluation of query results are confined to the Course Website dataset. We
use the same settings as the sustenance experiments by training on 80% of the query sessions
and testing on the remaining 20% sessions. Table 4 presents some vital statistics about both the
underlying data and the query workload. Among the 113 tables in the Course Website schema,
65 tables have fewer than 10 tuples. We can notice from Table 4 that the number of tables keeps
reducing with increasing cardinalities thereby forming a long-tail distribution. Although we did
not notice a strong bias, we have observed that the small and medium-sized tables with cardinality
lesser than 1K frequently participate in the query workload. Following the train, test splits from
Section 5.1, among 23K test queries, there exist 14,444 non-terminating queries that are followed by
asuccessor query in their corresponding user sessions. As mentioned in Table 4(a), 89% of the query
workload comprises SELECT queries as it is predominantly OLAP. We observed 12,883 SELECT
queries among the 14K non-terminating test queries that we use for query result comparison. A
majority of these queries return non-zero results upon execution (see Table 4(b)), although we
compute quality metrics on queries returning both zero and non-zero results.

5.3.1 Query Re-generation. To re-generate an SQL query from the predicted SQL fragments,
we follow either of the two following approaches: (a) SQL reconstruction or (b) SQL borrowing
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Table 4. Table Cardinalities and Query Execution Statistics (Course Website)

(a) Cardinality Frequency

Cardinality | #Tables
0-10 65
11-100 26 (b) Query Result Distribution (Sustenance)
101-1000 14 #Zero Results #Non-zero Results
1K= 10K 5 3,299 9,584
T10K-100K 2
>100K 1

that borrows a historical SQL query from the training sessions. SQL reconstruction creates an SQL
query entirely based on the predicted SQL fragments, whereas the latter approach borrows an SQL
query from the training sessions that exactly matches the predicted set of fragments. We use a set
of heuristics to explicitly re-construct an SQL query, whereas we create a dictionary of key-value
pairs to facilitate SQL borrowing though a constant time lookup. Each distinct SQL query seen
during training is stored as an entry in the dictionary—the set of SQL fragments within the query
becomes the key and the query itself is stored as the value. Since we can have several training
queries containing the same SQL fragment set (key), we randomly pick one of them and store it
as the value to make the dictionary memory-efficient. Either SQL reconstruction or borrowing is
applicable to collaborative filtering-based recommender systems, historical RNNs and Q-Learning.
However, in the case of synthesis-based RNNs, borrowing a training query may not always work,
because RNN-Synth can predict SQL fragments that correspond to unseen SQL queries that are
absent from the training sessions. Therefore, if we use SQL borrowing for RNN-Synth, then we
first check if the set of predicted fragments is in the dictionary key list. If we find a matching key,
then we return the corresponding value from the dictionary entry as the predicted SQL query;
otherwise, we fall back to query reconstruction. This problem does not arise with other ML ap-
proaches as all of them predict SQL fragments entirely from the query vocabulary created from
training sessions.

Following are the steps we follow for query reconstruction based on the predicted SQL
fragments.

e Each SQL query is created by stitching together the predicted SQL fragments in the fol-
lowing order: query (DML) type, projected columns, tables, selection predicates, join pred-
icates, group by, and order by predicates. FROM and WHERE keywords are appropriately
added in between. We always use AND to create a conjunction of multiple selection (or join)
predicates.

e While adding a projection column to the query, we check if the column is present in the
group by list. If so, then we add the column as it is to the projected columns without any
further checks. Otherwise, we check if the projected column is associated with an aggregate
operator such as MIN, MAX, SUM, COUNT, and AVG and accordingly project the column
with (or without) its aggregate operator in the reconstructed SQL query.

e While creating join predicates within the SQL query, we include the left table, right table,
left column, and the right column based on the predicted fragments. As for the arithmetic
operator between the left and right columns, we always include the “=" operator as we do
not explicitly predict the arithmetic operator for join predicates.
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Fig. 19. Predicted query vs. next query w.r.t. execution result tuples (80% train, 20% test).

e The inclusion of the group by columns, order by columns, selection predicate columns and

the arithmetic operators for selection predicates within the SQL query is straightforward
as it involves copying the predicted fragments into the reconstructed SQL query.

As mentioned in Section 3.2.2, we represent the constants of all data types in selection predicates
as 10 equi-depth range bins for each column and an additional “NULL” bin to accommodate IS
(NOT) NULL clauses and out-of-range constants. Therefore, we apply the following heuristics
in the same order to infer the selection predicates from the predicted bins. Although we do not
explain the rationale behind these heuristics for space reasons, they are aimed at enhancing the
recall without losing upon precision. Also, we do not include HAVING and LIMIT clauses in query
reconstruction, but the inclusion of constants within those clauses can follow similar steps.

(1) Ifa“NULL” bin is predicted, then we include an “IS NOT NULL” or “IS NULL” predicate re-

spectively into the query depending on whether the arithmetic operator is # or something
else.

(2) If the lower and upper bounds in the predicted bin are the same (possible for equi-depth

range bins and also in cases where #distinct column values < 10), then we create the
selection predicate from column name (ATTR), arithmetic operator (OP) and the bound
(LOWER/UPPER).

(3) If the arithmetic operator (OP) is “=”, then we create a conjunctive predicate as ATTR >

LOWER AND ATTR < UPPER where LOWER and UPPER refer to the respective bounds
in the bin.

) If OP is < or <, then we create the predicate as ATTR OP UPPER.

) If OP is > or >, then we create the predicate as ATTR OP LOWER.

) If OP is #, then we include a disjunctive predicate as ATTR < LOWER OR ATTR > UPPER.

) If OP is ‘LIKE’, then we include a disjunctive predicate as ATTR OP LOWER OR ATTR
OP UPPER.

5.3.2  Query Result Evaluation. Figure 19 compares the results of the queries predicted by each
of the ML algorithms w.r.t. the actual next queries upon the Course Website dataset. Following are
the steps to compute the test F1-score.

We compute the column F1-score referred to as F1(Col) based on the overlap between the
columns projected in the result set of the actual and predicted query.

We compute the tuple F1-score also called F1(Tup), based on the tuples that overlap between
the predicted and actual query results only w.r.t. the matching columns.
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Fig. 20. Effect of SQL violation fixes on synthesis-based RNNs (80% train, 20% test).

e We compute the total F1-score or F1(Tot) as ax F1(Col) + (1 — a)x F1(Tup). We set « to 0.2
in our experiments to give a higher weightage to F1(Tup). We present all the three F1-scores
in most of the figures.

We also consider the following steps to handle special cases:

(1) Ifthe predicted query is not of valid SQL syntax and cannot be executed, then the F1-score
is 0.

(2) If only one of the predicted and the actual queries returns an empty result, then the F1-
score is 0.

(3) Ifboth the predicted and the actual queries return empty results, then F1(Col) is still com-
puted based on the overlapping set of columns. If F1(Col) is non-zero, then F1(Tup) is 1.0
and F1(Tot) is computed as their weighted average. If the matching columns are empty,
then F1(Tot) is 0.

As mentioned in Section 5.3.1, we create the predicted SQL query from the fragments in one
of two ways - query borrowing or query reconstruction. Figure 19(b) reports a comparison
between the total Fl-scores, F1(Tot), obtained from borrowing a query and reconstructing a
query. We can notice that borrowing outperforms reconstruction and this is evident from the
fact that query reconstruction cannot obtain the exact constants in the selection predicates.
However, surprisingly enough, Q-learning and RNN-Synth achieve high F1-scores of 0.86 and
0.72 from query borrowing. Also, we can notice that the relative performance among the ML
algorithms is consistent across both borrowing and reconstruction. We report the breakdown
of the total F1-scores in Figure 19(a), and we find that F1(Col) > F1(Tup) and the fact that we
give more weightage to F1(Tup) makes our reported F1(Tot) an under-estimate. In Figures 19(a)
and (b), we report the Fl-scores over the Top-3 predicted queries. However, it is likely that a
few applications may choose to speculatively execute only the Top-1 predicted query and cache
its results. Therefore, we compare the test F1-scores obtained from Top-3 predictions against
those from Top-1 prediction, and we can notice from Figure 19(c), that Top-1 performs slightly
worse as compared to Top-3 in the case of both Q-Learning and RNN. In the case of SVD-based
collaborative filtering, the difference is significantly high.

5.3.3  Effect of SQL Violation Fixes and Experience Replay. In this section, we evaluate two im-
portant enhancements that we apply to our adaptation of temporal predictors. The first one is the
SQL violation fixes we proposed for synthesis-based RNNs in Section 4.2.2. The second one is ex-
perience replay from the Q-Learning literature [47, 50] that we described in Section 4.3. Figure 20
shows the effect of SQL violation fixes on both the datasets. These fixes are applied only during
the prediction phase. Since these are constant-time fixes, there is no noticeable increase in latency
upon using these fixes as compared to not using them (see Figure 20(c)). We can also notice that
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Fig. 21. Effect of experience replay and random action selection on Q-learning (80% train, 20% test).

there is no significant benefit in using these SQL fixes for the Bus Tracker dataset (Figure 20(b)).
This is because the number of distinct queries is as few as 25 for this dataset that makes the pre-
diction task easier. If RNNs are sufficiently exposed to all possible query transitions during the
training phase, then the weights of the RNNs are well refined and the RNN predictions require
fewer fixes during the testing phase. In the case of Course Website dataset, we can observe that
the recall in the case of query fragment prediction (Figure 20(a)) drops significantly without SQL
violation fixes, but the precision is still high. This shows that the training data does not capture all
possible transitions with a high enough frequency for the RNN weights of all the successor query
fragments to exceed the pre-set threshold. This brings us back to the discussion of a reasonable
threshold to set and also establishes that our method of applying SQL violation fixes is princi-
pled and generic enough that can enhance the recall without sacrificing precision significantly as
shown in the figure. This can also be attributed to the fact that we use well-defined SQL-specific
rules and always set the compatible fragments with the highest probability from the predicted
output weight vector. In the case of result quality, the F1-scores are much higher while using SQL
fixes as compared to not using them (Figure 20(d)). This explains the need for SQL fixes because,
without them, several queries will miss essential query fragments that makes them invalid and
non-executable. As mentioned in Section 5.3.2, if the predicted query cannot be executed, then the
F1-score is 0. Note that despite not fixing the SQL violations, the fragment prediction F1-score of
RNN-Synth for Course Website (Figure 20(a)) is greater than collaborative filtering and historical
RNN:Ss (see Figure 9(a) for comparison).

Figure 21 shows the effect of experience replay and random action selection on Exact Q-
Learning. Although we cannot observe a noticeable difference in predicted query fragment quality
(Figure 21(a)) for both the datasets, we can notice some decrease in the query result qualities upon
not using experience replay from Figure 21(c), i.e., 0.84 vs. 0.77 for F1(Tup) and 0.86 vs. 0.8 for
F1(Tot). Figure 21(b) shows that the usage of experience replay can increase the training time for
larger datsets, which marks a latency vs. quality tradeoff. We sample as few as 100 transitions in
each sparsity reduction iteration that can perhaps be increased, but that also increases the training
time.

5.3.4  Effect of Session Context. To examine the effect of session context, we have implemented
a variant of synthesis-based RNNs that concatenates the current query to the preceeding queries
from the ongoing user session and feeds them to the RNN as an input to predict the next query. We
confine our context representation to a total of three queries (including the current query) to save
on training and test latency. We refer to this implementation as LAST-3 in Figure 22. In contrast, we
term the default implementation that feeds <Input Query, Next Query> train and test pairs to the
model as LAST-1. We can notice from Figure 22(a) and (b) that LAST-3 performs significantly worse
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Fig. 22. Effect of session context on synthesis-based RNNs (80% train, 20% test).

than LAST-1 w.r.t. fragment quality on both the datasets. Figure 22(d) shows that the query result
F1-scores of LAST-3 on the Course Website dataset are close to 0. Interestingly, the implementation
of synthesis-based RNNs, GRUs and LSTMs show a consistent result. Following are the reasons
for this seemingly surprising result.

e The previous queries in a session do not have an equal influence on next query prediction.
To formulate the context vector, we have to apply attention models [4] that can learn the
weighted influence of earlier queries on the prediction.

e It has been noted in earlier works on attention models [4, 8] that increasing length in an
input sequence does not necessarily produce better temporal prediction quality.

e In addition to the above reasons, for sequence prediction to work well with a longer input
sequence, enough instances of <input sequence, next query> pairs should be seen by the
temporal predictors to capture the effect of sequences. Our results show that <Current
query, Next query> pairs are frequently observed as compared to long sequences and we can
get competent performance from sequence models even without context on our datasets.

Also, we observed that the increase in prediction latencies by adding context information is greater
than the increase in training latency. Therefore, we presented the prediction latencies alone in
Figure 22(c) for space reasons. The implementation of attention models to capture the session
context is beyond the scope of this article. To train attention models with minimum latencies and
long sequences with several prior queries, we need to compress our SQL-aware embeddings and
this compression strategy also needs to be reversible to re-generate the source embeddings. This
is an interesting problem we plan to solve in a future work. In the case of Q-learning, we do not
need to explicitly represent each state as a sequence with context, because the Q-table inherently
captures the notion of a sequence within the Bellman equation (see Equation (1)). Q-values are
long-term rewards defined recursively such that the value assigned to a transition from source to
target query is dependent on the optimal look-ahead reward from the target to goal query.

5.4 Discussion

In this section, we discuss the significance of our findings and interesting directions for further
research. The first half of the discussion is devoted to fragment embeddings while the second part
focuses on the effectiveness of ML algorithms for next query prediction.

5.4.1 Effect of Embedding Creation. As we have mentioned in Section 3.2, we create the embed-
ding vectors for the entire dataset comprising both the train and test queries in an offline step. This
is because all the ML algorithms use the same embedding vectors and hence, the latency results
we presented so far exclude the effect of embedding. In Table 5, we present the average time in
seconds taken to generate the embedding for each query and the next query fragment prediction
latency incurred by each of the ML algorithms. We also present the average execution latency
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Table 5. Average Embedding Creation, Query Prediction, Execution, and Re-generation Latencies (s)

Avg. | Q-Learn| RNN-S | CF-SVD | CF-Cos | RNN-H| Avg. Avg. Avg.
Dataset Embed | Predict | Predict | Predict | Predict | Predict | Exec. | Borrow |Reconstruct
Time(s) | Time(s) | Time(s) | Time(s) | Time(s) | Time(s) | Time(s)| Time(s) Time(s)
Course Website 3.09 1.56 0.52 1.73 1.53 4.33 0.03 1.18x 107> | 2.72x107°
Bus Tracker 0.54 0.02 0.18 0.06 0.07 2.04 0.0002 N/A N/A

per query along with the predicted query re-generation time to contrast it with the embedding
creation and next query prediction times. The reason for this is that in real time, when a query is
issued by an end user, an embedding vector is generated for the query and is passed to the next
query predictor as shown in Figure 1. Simultaneously, the current query is executed by the data-
base and the results are returned. The next query embedding is predicted, its SQL counterpart is
re-generated, and the predicted SQL query passed back to the user along with the result tuple set
from the current query execution. Therefore, we use Table 5 to check if the embedding creation,
next query prediction, and re-generation latencies are at least partially covered by the execution
time. We can notice that the query re-generation times are insignificant whether we follow the
query borrowing or SQL reconstruction technique described in Section 5.3.1. Although we find
that the execution time together with the query re-generation time is lesser than the sum of the
embedding creation and next query prediction times, if we also consider the user think time, then
we can realize the importance of next query prediction. This is because a human user always needs
to observe and analyze the results of the current query to decide upon her next query to the data-
base, which consumes a non-trivial amount of time. From Table 5, we can notice that the average
embedding creation time increases as the schema gets complex. This is because the dimensionality
of a query embedding that we generate is not dependent on the size of the database; rather, it is
dependent on the size of the schema that primarily includes #tables and #columns per table. While
the Course Website dataset consists of 113 tables and 839 columns in total, Bus Tracker consists of
95 tables and 770 columns. However, the dimensionality of Bus Tracker embedding is 9,155 bits,
which is much lesser than 102,020 bits required for Course Website. The reason for such a huge
difference is that the number of column pairs from various tables that can possibly participate in
join predicates is 1,355 for Bus Tracker as against 92,045 for Course Website. This difference in
schema complexity is also reflected in the embedding creation latencies. While it takes 3.09 s on
an average to generate a query embedding for Course Website, it only requires 0.54 s for the Bus
Tracker dataset.

The prediction latencies reported for various ML algorithms make use of intra-query paral-
lelism. All the ML algorithms pre-build their models from 80% training data in an offline step.
Except for RNN-Synth, each ML approach uses 48 processes to parallelize the next query predic-
tion given the current test query. As we have explained, the sizes of the sampled sessions and the
pre-built models are smaller for the Bus Tracker dataset. Also, given that the embeddings have
lower dimensionality for Bus Tracker as compared to Course Website, the prediction phase for CF
and Q-Learning benefits from parallelism and outperforms RNN-Synth. However, upon the larger
Course Website dataset, we can clearly see the effect of constant time prediction that RNN-Synth
is enabled with. It takes as less as 0.52 s per query to predict its next query embedding. RNN-H
incurs the largest time, because it has to compute the entropy between the probabilistic output vec-
tor emitted by the RNN and every sampled query from the historical logs, to pick the top-K next
query candidates with the least entropy. This is more expensive than the session level sampling
that CF algorithms use to detect the closest session to the ongoing test session. For the Course
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Website dataset, the best cumulative next query prediction latency comes from RNN-Synth (3.09
+0.52 = 3.61 s), whereas for the Bus Tracker dataset, Q-Learning performs the best with 0.54 +
0.02 = 0.56 s. Note that we do not have any available data for Bus Tracker dataset that means that
every query returns 0 tuples. Therefore, the average query execution time is as low as 0.0002 s for
Bus Tracker as compared to Course Website. In reality we anticipate this time to be longer. The
conclusion we draw from this analysis is that, full query prediction is worthwhile if the user think
time is comparable to the embedding creation time.

To alleviate the embedding creation time, there are two possible solutions. One of them is to
parallelize the embedding vector creation. In fact, our offline step of embedding creation partitions
SQL queries among several threads all of which simultaneously create the embeddings via inter-
query parallelism. Another solution is to avoid predicting the entire query. As we have discussed
in Section 3.2.2, existing works such as Reference [23] that focus on join cardinality estimation
only need to predict the join and selection predicates. Our fragment embedding is SQL-aware
unlike existing SQL-agnostic numerical embedding libraries such as Word2Vec that exist for NLP.
Thus, we can choose the operators to include in the embedding vectors and thereby selectively
train the ML models on a subset of SQL operators that need to be predicted. This will not only
reduce the embedding creation time but also speed up the training and test phases. However,
this depends on the application task at hand that decides that operators ought to be predicted.
For instance, prediction only upon the Bellwether fragments may be useful enough in several
scenarios.

5.4.2  Effectiveness of ML Algorithms. Table 6 shows an illustrative scenario for both the
datasets. Given an instance of the current SQL query, the next query predicted by each ML al-
gorithm is shown in the table along with the test F1-score obtained upon comparing the predicted
query with the ground truth that is the ideal successor to the current query. Note that these are
real instances of experimental queries and the predicted queries and test F1 metrics in Table 6 are
also real. From Table 6(a), we can notice that Q-Learn predicts the ideal successor including the
selection predicate constant bin [674-888] that captures the expected constant (888). RNN-Synth
narrowly misses the constant bin but it heavily loses out on predicting the projection list accu-
rately. Of all the columns, it only predicts a single column, name, that brings its test F1-score
down to 0.3. CF-based approaches totally predict the wrong queries but get a non-zero test F1 for
getting the DML type right. On similar lines, both Q-Learning and RNN-Synth predict the next
query accurately for the current query example from the Bus Tracker dataset (Table 6(b)). Note
that the selection predicates for the Bus Tracker queries only contain the columns but not the
constants. As we discussed in Section 3.2.2, constant prediction is excluded for Bus Tracker due to
the lack of data. Also, both CF-SVD and RNN-H perform better on Bus Tracker than Course Web-
site. This is because Bus Tracker has a more concise vocabulary that makes it easier for sampling
to capture a lot of the distinct queries. CF-Cos, however, consistently performs poorly, because
it relies on two-level sampling and identifying the similar sessions from training data alone is
not enough. It also needs to match the ongoing test session to the sampled queries within the
sessions to fetch the top-K queries, unlike CF-SVD that only needs to sample sessions. Likewise,
RNN-H only needs sampling upon queries alone but not on sessions. From our experiments, we
learned the following lessons that contributed to the effectiveness of ML algorithms for next query
prediction.

e For ML algorithms that rely on historical query prediction, we created and stored the
query vocabulary effectively. Our experiments show that in real-world datasets, the distinct
queries that form the vocabulary are actually fewer as compared to the sizes of the query
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Table 6. Predicted Next Queries for an Example Current Query
(a) Course Website
Approach Predicted Next Query based on Fragments
Q-Learn SELECT * FROM jos_community_courses WHERE id = [674 - 888] (F1=1.0)
RNN-S SELECT name FROM jos_community_courses WHERE id = [889 - 1360] (F1=0.3)
CF-SVD SELECT COUNT(userid) FROM jos_community_usefulness WHERE resourceid = [3348 - 3684] (F1=0.05)
CF-Cos SELECT rsource_type FROM resource WHERE gid = [3510 - 3883] (F1=0.06)
RNN-H SELECT MAX(resource.gid) FROM resource (F1=0.06)
SELECT rsource_type FROM resource WHERE gid = 888 (Current Query)
SELECT * FROM jos_community_courses WHERE id = 888 (Next Query)
(b) Bus Tracker
Approach Predicted Next Query based on Fragments
Q-Learn SELECT agency_id FROM m_agency WHERE {agency_id, valid_now} (F1=1.0)
RNN-S SELECT agency_id FROM m_agency WHERE {agency_id, valid_now} (F1=1.0)
CF-SVD SELECT user_id FROM m_agency WHERE {agency_id, valid_now} (F1=0.8)
CF-Cos SELECT COUNT(*) FROM dv_notes_message WHERE {user_id, agency_id, notice_id, route_id}
(F1=0.03)
RNN-H SELECT agency_timezone FROM m_agency WHERE {agency_id} (F1=0.44)

SELECT COUNT(*) FROM dv_notes_message WHERE {user_id, agency_id, notice_id, route_id} (Current Query)
SELECT agency_id FROM m_agency WHERE {agency_id, valid_now} (Next Query)

logs. Optimizations such as SHA-256 derived a concise representation for the embeddings
and made the query vocabulary creation easier, also saving on computational complexity.

e To sample more and still save on prediction latencies, we used CPU-bound parallelism.

e Since RNNs predicted occurrence probabilities for each fragment, we used synthesis instead
of relying on historical query logs. This not only brought about constant prediction time
but also enabled a fine-grained control on the quality of the next query. Depending on
whether we wanted to bias on enhancing the precision or recall, we could fine-tune the
query correction mechanism. We also observed that even single threaded implementation
of synthesis-based RNNs outperformed heavily parallelized ML algorithms in next query
prediction. Such benefits became more obvious when the experiments were conducted on
the larger query workload from Course Website dataset.

e Exact Q-Learning emerged as the overall winner on quality, cumulative train and test la-
tency as well as the memory requirement. Before going for advanced variants such as deep
Q-Learning that are in fact approximations, it is important that database practitioners val-
idate the applicability of Exact Q-Learning to the research problem at hand. A surprising
thing we learned is that the materialized Q-Table was much smaller than the RNN models
created by out-of-the-box ML libraries such as TensorFlow.

There are several applications that can benefit from query prediction. As a future work, we in-
tend to exploit query workload prediction to data re-organization and buffer page management in
databases. We plan to extend this work to build self-managed or autonomous databases in which
we can automate every component of the DBMS ranging from query optimizer, indexer to memory
manager. As we have mentioned in Section 1, query fragment prediction can help in preemptive
execution of partially or fully created query plans and can also help in configuring #threads for
speculative parallelism of SQL operators in future user-issued queries.
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6 CONCLUSION

In this article, we adapt and evaluate several ML algorithms for next query prediction during a
human-database interaction session. As a part of our adaptation, we implement session cleaning
heuristics, query fragment embedding vector creation, concise representations of query vocabu-
lary and inter-and intra-query parallelism for predicting the next query completely from histori-
cal query logs. We also propose synthesis-based RNNs that can achieve constant prediction times
without relying on historical queries. We propose two kinds of experiments to evaluate the ML
algorithms both in an offline training scenario and an online test-then-train streaming queries
scenario. Based on an exhaustive evaluation on two real-world datasets, we find that among all
the ML algorithms that we implement, exact Q-Learning in conjunction with numerical reward
function is the best performing algorithm on test F1-scores, cumulative train and test latencies and
memory consumption. We observe that next query prediction benefits from temporal predictors
over adaptations of state-of-the-art recommender systems.
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