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ABSTRACT
Identifying various mentions of the same real-world locations is
known as spatial entity matching.𝐺𝐸𝑀 is an end-to-end Geospatial
EM framework that matches polygon geometry entities in addition
to point geometry type. Blocking, feature vector creation, and clas-
sification are the core steps of our system.𝐺𝐸𝑀 comprises of an ef-
ficient and lightweight blocking technique,𝐺𝑒𝑜𝑃𝑟𝑢𝑛𝑒 , that uses the
geohash encoding mechanism. We re-purpose the spatial proximal-
ity operators fromApache Sedona to create semantically rich spatial
feature vectors. The classification step in 𝐺𝐸𝑀 is a pluggable com-
ponent, which consumes a unique feature vector and determines
whether the geolocations match or not. We conduct experiments
with three classifiers upon multiple large-scale geospatial datasets
consisting of both spatial and relational attributes. 𝐺𝐸𝑀 achieves
an F-measure of 1.0 for a point× point dataset with 176k total pairs,
which is 42% higher than a state-of-the-art spatial EM baseline.
It achieves F-measures of 0.966 and 0.993 for the point × polygon
dataset with 302M total pairs, and the polygon × polygon dataset
with 16M total pairs respectively.

CCS CONCEPTS
• Information systems → Entity resolution; Geographic in-
formation systems.
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1 INTRODUCTION
As geospatial data flows in from different sources, various hurdles
arise such as data inconsistency, data redundancy, discrepancy
between old and new data and much more. To make it useful, such
data needs to be curated before being passed to applications. Entity
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matching (EM) is an integration technique with a goal to match
different mentions of the same real-world entity [10] across diverse
data sources.

Relational EM is a fervent area of research and relational EM
systems leverage string similarity functions to derive numerical
feature vectors for a textual record pair. Magellan [8] is an end-
to-end relational EM system and DeepMatcher [12] applies deep
learning techniques for relational EM. We feed Magellan and Deep-
Matcher with pre-aligned spatial data and compare their perfor-
mance against our system 𝐺𝐸𝑀 . We implement Magellan as an
end-to-end system with its default or best working options - Over-
lap blocker and Random Forest Classifiers as highlighted by Konda
et al. [8]. Whereas Mudgal et al. [12] engages complex neural net-
works to derive suitable representation for the long text attributes.
The major limitation while adapting relational EM to spatial data is
that spatial attributes are treated as plain strings, resulting in loss
of non-trivial coordinate information. This can lead to substandard
performance which we empirically validate in Section 3.

Spatial EM is the task of determining whether the given spatial
entities map to the same geolocation [7]. Unlike relational EM, we
cannot simply treat spatial coordinates (i.e., latitude and longitude)
as strings in spatial EM. Doing so will result in a significant loss
of semantic information and poor matching performance. Some
state-of-the-art spatial EM systems [6, 7, 11] only match a point
to a point, which falls short in catering to diverse geometric data
types of geospatial data. Martins [9] has performed EM across
different spatial data types (i.e. points and polygons) by considering
simple distance heuristics and functions based on area overlap to
determine the similarity across spatial geometries. These distances
need to be normalized and are much less advanced than the 7 spatial
proximality operators we use in 𝐺𝐸𝑀 .

QuadSky [7] is an end-to-end spatial EM system with support
for blocking, feature vector creation and matching. Although, it
only matches point geometries and hence to adapt it for polygon
matching, we reduce the polygon to a point i.e., its centroid. Doing so
leads to poor EMperformancewhichwewill show in Section 3. Note
that we could not compare𝐺𝐸𝑀 to GeoBench [11] or GeoAlign [6]
due to their restrictive web interfaces and lack of source code.
In summary, we note that the relational EM systems need non-
trivial adaptation towards solving the spatial EM problem. Although
some of the existing works on spatial EM can tackle both relational
and spatial attributes, they miss out on catering to the diverse
spatial geometry which includes polygons. Moreover the system
that works with points and polygons employes a very naive metrics
of distance and area overlap for decision making.

Problem Definition: Consider two spatial datasets 𝑆𝑙𝑒 𝑓 𝑡 and
𝑆𝑟𝑖𝑔ℎ𝑡 . Tuples in these datasets are well-defined spatial entities that
have both spatial and relational (non-spatial) attributes. The EM

https://doi.org/10.1145/3474717.3483973
https://doi.org/10.1145/3474717.3483973


SIGSPATIAL ’21, November 2–5, 2021, Beijing, China Setu Shah, Vamsi Meduri, and Mohamed Sarwat

(a) Point × Polygon (b) Polygon × Polygon (c) Point × Point

Figure 1: Illustrative examples of Spatial Entity Matching across diverse geometries

Approaches Support for spatial data
Spatial
Blocking

Different geometry
support

Feature
generation Training Inference

Magellan[8] No N/A No No No
Deepmatcher[12] No N/A No No No
GeoBench[11] Yes Point Yes N/A No
GeoAlign[6] No Point Yes N/A No
QuadSky[7] Yes Point Yes N/A Yes

Table 1: State-of-the-art approaches

task here is to match spatial entities from 𝑆𝑙𝑒 𝑓 𝑡 to that of 𝑆𝑟𝑖𝑔ℎ𝑡 .
These datasets have pre-aligned schema and can have spatial data
of either geometry type: point or polygon.

Our system provides support for three entity matching scenarios:
point×point, point×polygon, polygon×polygon. Figure 1 depicts the
three scenarios and provides an example for each case. Consider an
entity pair 𝑠1 ∈ 𝑆𝑙𝑒 𝑓 𝑡 and 𝑠2 ∈ 𝑆𝑟𝑖𝑔ℎ𝑡 . Each pair contains one spatial
and three relational attributes. 𝑠1 and 𝑠2 in fig 1a are classified as a
match based on the coordinates and the similarity between name
and address . In contrast, the pair in Figure 1b is marked as a non-
match because all the attributes are different. Even though address
and category are similar in Figure 1c, the entity pair is classified as a
non-match because of different name and coordinates. In this paper,
we introduce an end-to-end Geospatial Entity Matching system
called 𝐺𝐸𝑀 , which can handle all these three EM scenarios. Our
blocking mechanism, 𝐺𝑒𝑜𝑃𝑟𝑢𝑛𝑒 , is similar to how Isaj et al. [7]
re-purposes the QuadTree algorithm for blocking, but we leverage
a much lighter geohash encoding technique [2]. 𝐺𝐸𝑀 leverages
Apache Sedona [1] which is a scalable geospatial data processing
engine to create spatial feature dimensions by re-purposing 7 spatial
join operators. These 7 spatial proximality operators provide rich
semantics about the geometry types using Boolean dimensions
which capture containment, equality, intersection, and distance.
We utilize the Simmetrics library [5] to create the relational feature
dimensions.

𝐺𝐸𝑀 encodes the information about both relational similarity
and spatial proximality between a spatial entity pair which is con-
verted into a numerical feature vector, that is passed to a binary
classifier to generate a match or non-match label for the entity pair.
Following are our contributions in this paper:

• 𝐺𝐸𝑀 that can provide seamless support for three spatial EM
case.

• Spatial blocking mechanism, 𝐺𝑒𝑜𝑃𝑟𝑢𝑛𝑒 , that uses the geo-
hash encoding technique.

• We build feature vectors at scale using Sedona and Simmet-
rics library.

• For classification, we provide 3 pluggable binary ML clas-
sifiers - Random decision forests (RF), Support Vector Ma-
chines (SVM), and feed-forward neural network (NN).

We will now discuss the system architecture of 𝐺𝐸𝑀 , followed
by experimental results.

2 OUR SOLUTION: GEM
The architecture of 𝐺𝐸𝑀 consists of preprocessing, followed by
spatial blocking, feature vector creation and lastly classification.
Figure 2 gives an overview of the system architecture. The pre-
processing step performs a sanity check to ensure that the entity
pairs do not have unaligned attributes or null spatial coordinates.
We require that the spatial coordinates of each entity pair are non-
null, although we allow the non-spatial attributes to have null
values. We generate coordinate information for datasets that do not
originally have spatial coordinates using the ’googlemaps’ pack-
age [3]. We label the pairs in the post blocking set in a semi-manual
fashion to create the ground truth for datasets that do not have gold
labels. We manually generate simple Boolean DNF (Disjunctive
Normal Form) rules for matching through trial-and-error method
on various samples of the data. These are approximate rules as
they are based on manual examination of several samples, which
is why we spent extensive manual effort to verify and correct the
mis-labelled pairs.

Spatial Blocking: 𝐺𝑒𝑜𝑃𝑟𝑢𝑛𝑒 , the spatial blocking step prunes
away the obviously non-matching pairs from the pool of Carte-
sian product pairs. It consists of two steps - geohash computation
and blocking. Geohash indexing is a flexible and efficient way of
encoding spatial coordinates into a 12 character string. The mecha-
nism of𝐺𝑒𝑜𝑃𝑟𝑢𝑛𝑒 is similar to prefix based similarity computation
in strings. Instead of textual feature strings, here we use geohash
codes. Consider a spatial entity pair (𝑠1, 𝑠2) with geohash codes
𝐺𝑠1 and 𝐺𝑠2 respectively. We determine a granularity, k, up until
which we will be matching the geohash codes of a given pair. For
instance, if k=5 then, every spatial entity pair whose initial 5 out of
12 characters in the geohash codes are same, will qualify to the post-
blocking candidate set. For example, (𝐺𝑠1 , 𝐺𝑠2 ): (9tbqhgn36wp7,
9tbqh1ma6xz5) will qualify, in contrast to another pair (𝐺𝑠1 , 𝐺𝑠2 ):
(9tbqhgn36wp7, 9tbq41ma6xz5) whose prefixes are different.
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Figure 2: System architecture overview of 𝐺𝐸𝑀

Dataset #left #right #total pairs #post-blocking

Point-Point

Fodors-Zagats (FZ) 533 331 176.4k 1314
Zomato1-Yelp1 (R1) 3013 5882 17.7M 3063
Zomato2-Yelp2 (R2) 7689 4055 31.1M 6864

Yelp-Yellow Pages (R3) 9947 28787 286.3M 30912
Polygon-Point Yelp-OSM 4979 60803 302.7M 229377

Polygon-Polygon AZ-Maricopa 4979 3357 16.7M 35864

Table 2: Details of the spatial datasets

The smaller prefix blocks subsume the larger prefix blocks, i.e. as
you increase the granularity measure, k, the size of the post block-
ing set will become smaller and smaller. This granularity measure,
k, is different for different datasets. The discussion about a precise
setting for 𝑘 is deferred to section 3. To the best of our knowledge,
we are the first to re-purpose geohash for spatial blocking. Comput-
ing the geohash code is fairly straightforward for points. In the case
of 𝑝𝑜𝑙𝑦𝑔𝑜𝑛𝑠 , we compute the geohash code of its centroid. If the
centroids of two polygons are reasonably far, this can be detected
by 𝐺𝑒𝑜𝑃𝑟𝑢𝑛𝑒 , that prunes away such polygon pairs.

Feature Vector Creation: We apply Apache Sedona’s seven
spatial SQL operators individually to each geometry pair in order to
derive their spatial proximity. They provide advanced semantics like
containment, equality, intersection, and distance about the spatial
entity pair. We put a ‘1’ if the proximal operator evaluates to TRUE
and ‘0’ if it evaluates to FALSE. The relational attribute similarity
evaluation is done by computing 21 string similarity scores like
Jaccard similarity, Cosine similarity, Levenshtein distance and more
using the Simmetrics [5] library and normalizing the values to
lie between 0 and 1. Since spatial information is vital in matching
locations, we replicate the seven spatial feature dimensions to create
a ratio of 60:40 for spatial:relational dimensions in the final feature
vector. We use simple NN that can benefit by oversampling as it
enables quick model training and convergence, making the system
time efficient.

Classification:We offer three types of classifiers that are eas-
ily pluggable into 𝐺𝐸𝑀 . We borrow the implementations of the
classifiers’ supervised variant for linear classifier: Support Vector
Machine (SVM), tree-based classifier: Random Decision Forests
(RF), and non-linear classifier: Neural Nets (NN) from Meduri et al.
[10]. They all take in the same unique feature vector generated in
the preceding step. The NN is a simple architecture with sigmoid
activation, L2 loss function and is trained for 100 epochs. SVM is
implemented as a cost-sensitive classifier that can handle the class
skew well to produce accurate results.

3 EXPERIMENTAL EVALUATION
We ran our experiments on an Intel Xeon E5-2687WV4 CPU (12
cores, 3.0 GHz per core) machine with 100 GB RAM and a 4 TB
hard drive. We used Apache Sedona 0.1.0 along with Apache Spark
3.0.1 and Apache Hadoop 2.7.2.

FZ R1 R2 R3 Yelp-
OSM

AZ-
Maricopa

Datasets

100

101

102

103

Tr
ai

ni
ng

 ti
m

e 
(s

ec
) -

 lo
g 

sc
al

e

0.
35

0.
3

1.
06

4.
12

46
.7

9.
0

0.
55 0.
67

1.
38

5.
68

39
.3

8.
912

.8
1

21
.0

76
.4

31
7.

0

30
56

.0

53
2.

0RF
SVM
NN

(a) Training latency

FZ R1 R2 R3 Yelp-
OSM

AZ-
Maricopa

Datasets

0

5

10

15

20

25

30

Te
st

in
g 
tim

e 
(s
ec
)

1.
5 1.
7 2.
4 4.

28

28
.0

9.
0

1.
65

1.
53 2.
22

4.
72

31
.4

11
.0

2.
2

2.
0 3.
0 5.

0

4.
0

7.
0

RF
SVM
NN

(b) Testing latency

Figure 3: Latency comparisons of the three classifiers across
all the datasets
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Figure 4: Evaluation of RF classifier for various values of k
in FZ dataset

As shown in Table 2 we have four restaurant datasets for the
point × point, and one each for the point × polygon and polygon ×
polygon cases. We borrowed R1, R2, and R3 from Konda et al. [8]’s
data repository and FZ from [4]. None of these four datasets origi-
nally had location coordinates; so we auto-generated them from the
given address. The Yelp-OSM dataset contains polygon coordinates
and point coordinates for various business establishments in Ari-
zona. Whereas the AZ-Maricopa contains polygon coordinates for
buildings in the entire Arizona and Maricopa County in Arizona.
While FZ dataset has its own ground truth [4], we determined the
ground truth for other datasets.Wemaintain the spatial equivalence
(distribution of tuple pairs in each region) across the 80% train and
20% test sets. Next we discuss the performance of various classifiers,
evaluate our GeoPrune blocking mechanism w.r.t. variation in k
(the spatial blocking threshold), and we compare 𝐺𝐸𝑀 against the
baselines.

Comparison of Classifiers: The training time for RF and SVM
are almost the same, while NN takes more time. Figure 3 shows the
time taken by each classifier for training and testing on different
datasets. Table 3 contains the values of test precision, recall and
F1-measure for all datasets over the three classifiers. We observe
that F1-measure for the point× point datasets over all the classifiers
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Random Forest SVM Neural NetworkDatasets Precison Recall F1-Measure Precision Recall F1-Measure Precision Recall F1-Measure
FZ 1 1 1 1 1 1 1 1 1
R1 0.967 0.967 0.967 0.948 1 0.973 0.88 1 0.93
R2 0.99 0.993 0.992 0.973 0.993 0.983 0.932 1 0.965Point-Point

R3 0.983 0.989 0.986 0.969 0.997 0.983 0.908 0.997 0.95
Point-Polygon Yelp-OSM 0.96 0.972 0.966 0.906 0.987 0.944 0.691 1 0.817

Polygon-Polygon AZ-Marizopa 0.997 0.99 0.993 0.971 0.983 0.977 0.901 0.99 0.95
Table 3: Test performance evaluation of 𝐺𝐸𝑀 across various classifiers and datasets

Figure 5: Comparison of𝐺𝐸𝑀 with baselines across 3 spatial
datasets with different geometries

≥ 0.95. Moreover both RF and SVM are highly accurate across all
three EM scenarios. RF works with a committee of 20 relatively un-
correlated decision trees that captures the nonlinear dependencies
among attributes and can handle non-separable cases effectively.
SVM’s accurate performance indicates that the data has very less
noise possibly due to effective blocking procedure. Even though
the NN we used has a simple architecture, it produces competitive
scores for most of the datasets and outperforms the more involved
NN like Mudgal et al. [12].

Evaluation of blocking: Random Forest classifier proves to be
accurate and efficient for majority of the datasets. Hence to study
the best blocking threshold 𝑘 for the FZ dataset we will fix RF as the
classifier. We use 112 matches provided with the dataset [4] while
labelling the ground truth. Figures 4a and 4b respectively shows
the number of FNs and number of post-blocking pairs for all values
of 𝑘 (1-12). As it can be observed, with increase in the value of 𝑘
the #FNs also increases which leads to decrease in Recall. While
the #post-blocking pairs decrease with the increase in 𝑘 which
implies that low values of blocking threshold 𝑘 will lead to high
training and test latencies. Hence we empirically deduce that the
most optimal blocking threshold for the FZ dataset is k=6, which
produces test F1-measure of 1.0 (see table 3).

Comparison with baselines: While 𝐺𝐸𝑀 performs the best
on point × point dataset, Konda et al. [8], Mudgal et al. [12] and
Isaj et al. [7] have an F1-score of 0.983, 0.84 and 0.70 respectively
for the FZ dataset. Although, these systems are not able to sustain
their performance for the other two spatial EM scenarios. We imple-
ment and compare the baselines as end-to-end EM systems. While
Magellan [8] is able to scale for all the Cartesian product pairs,
due to its coarse post-blocking set and treating spatial attributes
as strings, it scores a F1-measure of only 0.88 and 0.905 for the
Yelp-OSM and AZ-Maricopa datasets respectively. DeepMatcher

[12] being a complex neural network classifier is not able to scale
for either point × polygon or polygon × polygon datasets, which is
illustrated by ‘TimeOut’ in Figure 5. QuadSky [7], provides support
only for the point data type and it suffers due to the approximation
of a polygon to its centroid (point). Doing so in the crucial step
of feature vector creation results in significant information loss
and compromised F1-scores. Hence for the AZ-Maricopa dataset,
QuadSky produces and F1-score of 0.86 while 𝐺𝐸𝑀 performs 15%
better with an F1-score of 0.99. The spatial EM system is not able
to scale for the Yelp-OSM dataset.𝐺𝐸𝑀 provides the best F1-scores
of 1, 0.966 and 0.993 for the three datasets respectively.

4 CONCLUSION AND FUTUREWORK
𝐺𝐸𝑀 achieved F1-scores of 1, 0.96 and 0.99 for FZ, Yelp-OSM and
AZ-Maricopa datasets respectively, emphasizing that the system
providing native support for diverse geometry types can outperform
geometry-agnostic spatial EM baselines. Possible directions for
future work include comparing 𝐺𝑒𝑜𝑃𝑟𝑢𝑛𝑒 to relational blocking
methods and evaluating the performance difference of 𝐺𝐸𝑀 with
and without oversampling geospatial feature dimensions.
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