
Generating Concise Entity Matching Rules

Rohit Singh: Vamsi Meduri; Ahmed Elmagarmid‹ Samuel Madden:
Paolo Papotti; Jorge-Arnulfo Quiané-Ruiz‹ Armando Solar-Lezama: Nan Tang‹

:CSAIL, MIT, USA ;Arizona State University, USA
‹Qatar Computing Research Institute, HBKU, Doha, Qatar

{rohitsingh, madden, asolar}@csail.mit.edu, {vmeduri, ppapotti}@asu.edu
{aelmagarmid, jquianeruiz, ntang}@hbku.edu.qa

ABSTRACT
Entity matching (EM) is a critical part of data integration
and cleaning. In many applications, the users need to un-
derstand why two entities are considered a match, which
reveals the need for interpretable and concise EM rules. We
model EM rules in the form of General Boolean Formulas
(GBFs) that allows arbitrary attribute matching combined
by conjunctions (

Ž

), disjunctions (
Ź

), and negations ().
GBFs can generate more concise rules than traditional EM
rules represented in disjunctive normal forms (DNFs). We
use program synthesis, a powerful tool to automatically gen-
erate rules (or programs) that provably satisfy a high-level
specification, to automatically synthesize EM rules in GBF
format, given only positive and negative matching examples.

In this demo, attendees will experience the following fea-
tures: (1) Interpretability – they can see and measure the
conciseness of EM rules defined using GBFs; (2) Easy cus-
tomization – they can provide custom experiment parame-
ters for various datasets, and, easily modify a rich predefined
(default) synthesis grammar, using a Web interface; and (3)
High performance – they will be able to compare the gener-
ated concise rules, in terms of accuracy, with probabilistic
models (e.g., machine learning methods), and hand-written
EM rules provided by experts. Moreover, this system will
serve as a general platform for evaluating different methods
that discover EM rules, which will be released as an open-
source tool on GitHub.

1. INTRODUCTION
Entity matching (EM), where a system or user finds

records that refer to the same real-world object, is a fun-
damental part of data integration and data cleaning.

There is a key tension in EM algorithms: On one hand,
algorithms that properly match records, i.e., high accuracy,
are clearly preferred. On the other hand, algorithms need
to be interpretable – that is, the user of the system needs to
understand why two entities are considered a match. Sys-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD ’17, May 14–19, 2017, Chicago, IL, USA.
c© 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3058739

tems that use probabilistic models – such as machine learn-
ing methods based on SVMs [2], or fuzzy matching [4] – are
much harder to interpret and hence are often not preferred
in applications that handle critical data such as healthcare.
In contrast, systems that are rule-based (“deterministic”) [3]
offer better interpretability, particularly when the rules can
be constrained to be simple (i.e., consist of relatively few
clauses). A key question, however, is whether such simple
rules can match the effectiveness of probabilistic approaches
while preserving interpretability.

Although hand-writing EM rules may be practical in some
limited domains, doing so is extremely time consuming and
error-prone. Hence, a promising direction is to use auto-
matic methods to generate deterministic EM rules, e.g., by
learning rules from training examples. This learning should
be done with as few examples as possible, because generat-
ing the training examples is itself laborious too.

We have developed a system that can effectively learn
EM rules that (i) match the performance of probabilistic
methods, (ii) produce concise and interpretable rules, and
(iii) learn rules from limited training examples. Our ap-
proach is to use program synthesis [5] (PS), in which a pro-
gram (set of rules) is generated by using positive and neg-
ative examples as constraints that guide the synthesizer to-
wards rules that match the examples. The demo will demon-
strate the following three key features: (1) Interpretability,
(2) Easy customization, and (3) High performance.

2. RULES AND ALGORITHMS
Let RrA1,A2, . . . ,Ans and SrA11,A

1
2, . . . ,A

1
ns be two rela-

tions with corresponding sets of n aligned attributes Ai and
A1i (i P r1, ns). As in previous work [6], we assume that the
attributes between two relations have been aligned and pro-
vided as an input; this can either be manually specified by
the users, or done automatically using off-the-shelf schema
matching tools [1]. Let r, s be records in R,S and rrAis, srA

1
i s

be the values of attributes Ai,A
1
i in records r, s, respectively.

A similarity function fprrAis, srA
1
i sq computes a similarity

score in the real interval r0, 1s. A bigger score means that
rrAis and srA1i s have a higher similarity. Examples of similar-
ity functions are cosine similarity, edit distance, and Jaccard
similarity. A library of similarity functions F is a set of such
general purpose similarity functions, such as the Simmetrics
(https://github.com/Simmetrics/simmetrics) Java package.

Attribute-Matching Rules. An attribute-matching rule
is a Boolean predicate representing fprrAis, srA

1
i sq ě θ,

where i P r1, ns is an index, f is a similarity function

#-Postive #-Negative #-Attributes
Examples Examples

DC 14, 280 170, 379 9
DAG 1, 300 95, 707 4
DLF 6, 048 335, 196 10

DC = Cora, DLF = Locu-FourSquare
DAG = Amazon-GoogleProducts

Table 1: Dataset Satistics

and θ P r0, 1s is a threshold value. Attribute-matching
rule fprrAis, srA

1
i sq ě θ evaluating to true means that rrAis

matches srA1i s relative to f and θ.

Notation. Let frAis ě θ be an attribute-matching rule
fprrAis, srA

1
i sq ě θ since Ai and A1i are known to have been

aligned. For example, Soundexrtitles ě 0.937 is an attribute-
matching rule that applies Soundex similarity function on the
title attribute from R and the name attribute from S (omit-
ted in the notation), and, compares it with the threshold
0.937. Note that for brevity we refer to attribute-matching
rules as atoms of a larger Matching Rule.

Boolean Formula Matching Rule. A Boolean for-
mula matching rule is an arbitrary Boolean formula with
attribute-matching rules as its variables (or atoms) and con-
junction (

Ź

), disjunction (
Ž

) and negation () as allowed
operations. Some Boolean Formula Matching Rules are:

ϕ1 : pLevensteinrtitles ě 0.8
Ź

Equalrvolumes ě 1.0
Ź

Equalrpagess ě 1.0)
ϕ2 : (Levensteinrtitles ě 0.5

Ź

Equalrauthors ě 1.0)
ϕ3 : (ϕ1

Ž

ϕ2)
ϕ4: if (noNullsrauthors ě 1.0) then ϕ2 else ϕ1

Note that“if puq then pvq else pwq”can be expressed with
the help of the negation operator () as pu

Ź

vq
Ž

p u
Ź

wq
but the “if then else” representation is more interpretable
and concise. This is where we use the power of program
synthesis to find a General Boolean Formula (GBF) that
represents a Boolean Formula matching rule.

Synthesis Algorithm. Our novel synthesis algorithm
searches for GBFs from a rich interpretable grammar (Fig-
ure 4) using a small set of matching and non-matching ex-
amples as constraints while smartly expanding the set to
include important corner cases. This process is repeated
multiple times to account for noise in the provided data and
the best GBF is chosen across all generated GBFs by max-
imizing an optimization metric (e.g. F-measure).

3. DEMONSTRATION OVERVIEW
In this demonstration, we will show how easy it is for the

users to obtain concise EM rules with our system without
tuning parameters (Default Configuration). We will show
the performance of our system compared with other state-of-
the-art techniques (Evaluation). In addition, we allow users
to customize the system to suit their needs (Customization).
We will focus on the EM application and show the underly-
ing PS problems off-line if there is interest.

Datasets. Table 1 shows three real-world datasets to be
used in this demonstration. We prune the Cartesian prod-
uct of records (comprising of up to 400 million pairs) from
positive examples to construct negative examples.

Dataset Specification. The schemas of two relations in
the datasets are aligned either by off-the-shelf tools, or by
the user using our Web interface, as shown in Figure 1.

Figure 1: Schema Alignment

Moreover, the specification should also include a set of pos-
itive (and negative) matching examples as a file. Table 2
shows one positive matching example for the Cora dataset.
The attendees can select one of the pre-specified datasets
(Table 1) and generate a concise EM rule for that dataset:

ϕsynth :
`

ChapmanMatchingSoundexrauthors ě 0.937
Ź

if noNullsrdates ě 1
then CosineGram2rdates ě 0.681
else NeedlemanWunchrtitles ě 0.733

˘
Ž

`

EditDistancertitles ě 0.73
Ź

OverlapTokenrvenues ě 0.268
˘

This EM rule specifies under which conditions two records
are considered as a match. Our tool can automatically figure
out (1) what similarity function and associated threshold
to use for each selected attribute; and more interestingly,
(2) under what logic they should be composed, e.g., with
conjunctions (

Ž

), disjunctions (
Ź

), negations (), and if-
then-else operations.

Below, we focus on the default parameters used for the
demo, some evaluation comparison with the prior state-of-
the-art, and our Web interface for users to tune parameters.

3.1 Default Configuration
Experiment Setup. The system optimizes F-measure on
the training data while performing 5-fold cross-validation
and compares the results with other interpretable (Decision
Trees of depth 3 or 4, SIFI [6]) and non-interpretable (Deep
decision trees, SVM) techniques.

Algorithm Parameters. The system uses a generic set
of 30 string similarity functions including equality, checking
for null values, and 28 others from the Simmetrics package.
The internal parameters (cutoffs and heuristics) for synthesis
have been empirically selected to balance running time with
accuracy of the produced rules.

Synthesis Grammar. The system uses a rich interpretable
grammar for GBFs with conjunction (

Ź

), disjunction (
Ž

),
if-then-elses, and negation () as allowed operations. The
grammar is predefined – the user needs neither to provide
the grammar, nor to be knowledgeable in program synthesis.

3.2 Evaluation
Interpretability. Besides our results, the attendees can see
the performance comparison among the state-of-the-art so-
lutions. For every experiment, the results will be displayed
in a web-based interface as shown in Figure 2. Generated

author title venue address publisher editor date volume pages

r P R
brodley, c.e., and

utgoff, p.e.
multivariate

decision trees
machine learning null null null 1995 19(1) 45-77

s P S
carla brodley and

paul utgoff.
multivariate

trees.
machine learning null null null 1995 19 null

Table 2: A Positive Matching Example from Cora Dataset

Figure 2: Results Interface

Figure 3: F-measure comparison

rules will be compared against those generated by other
techniques to demonstrate the conciseness of our rules. For
example, we show the rule generated with a decision tree
(ϕtree) for the Cora dataset (Tables 1 & 2) below:

ϕtree :
`

OverlapGram3rtitles ě 0.484
Ź

MongeElkanrvolumes ě 0.429
Ź

Soundexrtitles ě 0.939
˘
Ž

`

OverlapGram2rpagess ě 0.626
Ź

MongeElkanrvolumes ě 0.429
Ź

`

Soundexrtitles ě 0.939
˘˘

Ž

`

ChapmanMeanLengthrtitles ě 0.978
Ź

`

OverlapGram3rauthors ě 0.411
˘

Ź

`

MongeElkanrvolumes ě 0.429
˘˘

Ž

`

CosineGram2rtitles ě 0.730
Ź

OverlapGram3rauthors ě 0.411
Ź

`

MongeElkanrvolumes ě 0.429
˘˘

As shown above, the rule ϕtree based on decision tree
is much more complicated than the rule ϕsynth from our
technique, as shown earlier in this section.

High Performance. Figure 2 also shows the performance
of our algorithm and its comparison with other methods
when optimizing F-measure. We will show that our tool
provides comparable F-measures as other methods. The
results obtained for our datasets can be seen in Figure 3.
RuleSynth, RS-BestTh, and RS-SynthComp are three
variants of our algorithm - RS-SynthComp will be used in
the default configuration.

Debugging. Users can download the experiment logs and
the records that were misclassified (by clicking on False pos-
itives / False negatives in Figure 2) by our algorithm and
re-run the experiment based on the insights gained from
them with more customizations (as discussed next).

3.3 Customization
The attendees have the opportunities to customize the

demo scenarios by modifying the dataset to be used, the
grammar feeding the PS engine, and other parameters.

Datasets. The interface in Figure 5 can be used to manip-
ulate existing datasets by (1) introducing errors; (2) reduc-
ing the number of positive and/or negative examples; and
(3) adding null values in the dataset. These changes make

Figure 4: Modifying EM Rule Grammars

Figure 5: Dataset Customization

the EM scenario much harder and enable the attendees to
see strengths and limitations of the different approaches.

Optimization Metric. The optimization metric can be
set to one of F-measure, Precision, Recall, Accuracy, or can
be provided by a user of the tool as native Python code,
such as a weighting function that increases the importance
of subsets of data to match correctly that are important
for the final application, e.g., certain subsets pertaining to
specific authors in the Cora dataset may need to be matched
at a higher accuracy than the others.

Algorithm Parameters. The set of similarity functions
can be augmented by adding or replacing custom functions
provided as native Python code. The algorithm cutoffs and
heuristics can be chosen from a specified range of options.

Synthesis Grammar. A rich set of predefined grammar
rules and bounds/constraints on top of them can be mod-
ified, e.g., one can limit any operator (^,_, , if) to occur
only at the topmost level, or limit their number of occur-
rences as they deem fit (Figure 4). This allows experts to
see the effects of changing the grammar. For example, richer
grammars can express more rules but may result in slower
convergence in the synthesis algorithm.

4. REFERENCES
[1] P. A. Bernstein, J. Madhavan, and E. Rahm. Generic

schema matching, ten years later. PVLDB,
4(11):695–701, 2011.

[2] M. Bilenko and R. J. Mooney. Adaptive duplicate
detection using learnable string similarity measures. In
SIGKDD, pages 39–48, 2003.

[3] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. IEEE Trans.
Knowl. Data Eng., 19(1):1–16, 2007.

[4] I. Fellegi and A. Sunter. A theory for record linkage.
Journal of the American Statistical Association, 64
(328), 1969.

[5] A. Solar-Lezama. The sketching approach to program
synthesis. In APLAS, pages 4–13, 2009.

[6] J. Wang, G. Li, J. X. Yu, and J. Feng. Entity matching:
How similar is similar. PVLDB, 4(10), 2011.

