
A Comprehensive Benchmark Framework for Active
Learning Methods in Entity Matching

Vamsi Meduri
Arizona State University

vmeduri@asu.edu

Lucian Popa
IBM Research, Almaden

lpopa@us.ibm.com

Prithviraj Sen
IBM Research, Almaden

senp@us.ibm.com

Mohamed Sarwat
Arizona State University

msarwat@asu.edu

ABSTRACT
Entity Matching (EM) is a core data cleaning task, aiming
to identify different mentions of the same real-world entity.
Active learning is one way to address the challenge of scarce
labeled data in practice, by dynamically collecting the nec-
essary examples to be labeled by an Oracle and refining the
learned model (classifier) upon them. In this paper, we build
a unified active learning benchmark framework for EM that
allows users to easily combine different learning algorithms
with applicable example selection algorithms. The goal of
the framework is to enable concrete guidelines for practi-
tioners as to what active learning combinations will work
well for EM. Towards this, we perform comprehensive ex-
periments on publicly available EM datasets from product
and publication domains to evaluate active learning methods,
using a variety of metrics including EM quality, #labels and
example selection latencies. Our most surprising result finds
that active learning with fewer labels can learn a classifier of
comparable quality as supervised learning. In fact, for sev-
eral of the datasets, we show that there is an active learning
combination that beats the state-of-the-art supervised learn-
ing result. Our framework also includes novel optimizations
that improve the quality of the learned model by roughly 9%
in terms of F1-score and reduce example selection latencies
by up to 10× without affecting the quality of the model.
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1 INTRODUCTION
Entity matching (EM) is an important step in data clean-
ing where the goal is to link different mentions of the same
real-world entity. Since many real-world downstream appli-
cations can benefit from clean data, improving EM continues
to be a topic of fervent research. In particular, a popular
approach to EM has been to formulate it as an instance of
binary classification: Given relations 𝐷1, 𝐷2 assign one of
match or non-match to each pair of tuples 𝑟 ∈ 𝐷1, 𝑠 ∈ 𝐷2
where 𝑟 and 𝑠 represent entity mentions.

Learning a binary classifier usually entails labeled training
data upfront (supervised learning), which is a significant in-
vestment in terms of human labeling effort. Active learning
[27] is a popular alternative that can avoid such prohibi-
tive costs and has a history of application in EM going back
almost two decades (early attempts include Sarawagi and
Bhamidipaty [26], Tejada et al. [30]). In contrast to super-
vised learning, active learning employs an example selector
that chooses the pair of mentions whose labels refine the
quality of the classifier learned thus far. By restricting it-
self to informative pairs of mentions only, active learning
hopes to achieve high quality EMwhile incurring less human
labeling effort.
While previous work has evaluated supervised learning

with classifiers of different flavors on the EM task (e.g., [21])
and built frameworks such asMagellan [20] that enable su-
pervised learning-based EM workflows, the same cannot be
said for active learning. Lacking comprehensive compara-
tive evaluations, it is difficult to say which combinations
of classifiers and example selectors work well on the EM
task given that several such combinations have been tried
in the past. Query-by-committee (QBC) [13, 28] is a specific
example selector which has been tried in conjunction with
decision trees [30], support vector machines and naive Bayes
classifiers [26]. Mozafari et al. [22] propose to implement
QBC in a learner-agnostic manner such that the example
selector is completely decoupled from the classifier being
used. While this makes implementation easier, the question
remains whether or not we can gain improved EM quality
if the example selector were learner-aware. While QBC has
seen sustained use [22, 26, 30], the active learning litera-
ture offers other learner-aware example selectors based on
margin [31] which has not seen much use in EM. Mozafari
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et al. is the only previous work we are aware of that com-
pares against margin example selector while Sarawagi and
Bhamidipaty mention it but do not evaluate it.
In this paper, we build a comprehensive framework for

benchmarking active learning-based EM. Currently, our frame-
work includes representative classifiers of four major types
including linear classifiers (e.g., support vector machines),
tree-based classifiers (e.g., random forests), non-linear clas-
sifiers (e.g., feed-forward neural networks) and rule-based
classifiers, and three different types of example selectors in-
cluding QBC, margin-based and heuristic example selectors
(as proposed in Qian et al. [25] to learn rule-based classifiers
at scale). While QBC is implemented in a learner-agnostic
manner with bootstrap [12, 22] which allows combining
QBC with any classifier, margin-based and heuristic exam-
ple selectors are learner-aware. While not all combinations
of classifier and example selector make sense (e.g., some
of the heuristic example selectors are explicitly designed
for rule-based classifiers), our framework allows maximum
plug-and-play ability using which we evaluate active learn-
ing approaches on several publicly available EM datasets
spread across 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 and 𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 domains.
Our main empirical results show that there is little to

choose between margin-based example selection and learner-
agnostic QBC in terms of quality of EM achieved, but the
former usually results in lower example selection latencies.
This situation might change however (depending on the
dataset), if we learn a learner-aware ensemble of classifiers
with margin-based example selection in which case, EM
quality in terms of F1-score might outperform QBC. Our
best results appear with learner-aware ensembles and QBC
(sans the learner-agnostic committee creation). In particular,
learner-aware QBC and random forests, which are natural
ensembles of decision trees, invariably produce the best qual-
ity EM approaching F1-scores of 100%. This highlights the
benefits of systematically implementing active learning EM
algorithms within the same framework and evaluating them
on a level playing field.
Thus, the primary contribution of this work is to build a

benchmark framework for active learning-based EM, using
which we provide guidelines to practitioners on the com-
bination of learner and example selector that performs the
best on various evaluation metrics such as EM quality, la-
tency, #labels and interpretability. Without this framework,
we would end up re-implementing the entire, end-to-end
active learning pipeline separately for each combination of
learner and example selector. Instead, this framework allows
for the necessary components to be plugged-in as shown
in Fig. 2, thereby requiring minimum or no changes to the
remaining components in the pipeline.

Since both high matching quality and low latency are cru-
cial for active learning scenarios, we propose two general

enhancements - learning active ensembles of highly precise
classifiers incrementally over several learning iterations for
enhanced F1-scores, and blocking to speed up example selec-
tion in the context of black-box mathematical models such
as Linear SVMs. Given that such enhancements exist to op-
timize example selection for rule-based classifiers [4, 25], it
is essential that these are extended to other learners while
evaluating the learners against each other.
Following is a summary of our contributions.
• We develop a unified active learning benchmark frame-
work that allows users to easily combine multiple learn-
ing models with several example selectors for EM.

• We conduct an exhaustive experimental study to com-
pare various active learning methods for EM on multi-
ple, publicly available datasets across two domains using
our benchmark framework. Our experiments evaluate
different approaches on EM quality, example selection
latencies and #labels.

• Our framework includes various novel optimizations
such as being able to learn ensembles of classifiers with
active learning. Other classifier-specific optimizations
include the usage of blocking with linear classifiers to
reduce example selection latencies .

• We find that random forests with learner-aware QBC can
routinely achieve near-perfect EM quality (progressive
F1-score close to 100%) on all the datasets we experiment
with, while being 10-100x faster w.r.t. example selection
latencies than learner-agnostic techniques.
This significantly improves upon previous EM works,
both of the active learning and supervised learning vari-
ety, especially on datasets from the product domain.

• While previous work [22] has reported QBC to outper-
form margin-based example selection, we find that there
is little to choose between the two in terms of EM quality,
and that the latter can outperform the former if ensem-
bles are learned.

• To estimate the effect of labeling errors in crowd-sourcing
situations, we evaluate all our active learning approaches
with noisy Oracles.

• We compare rules and tree-based models on an inter-
pretability metric defined by Singh et al. [29]. We infer
that although tree-based ensembles perform the best on
EM quality, they sacrifice interpretability.

2 RELATEDWORK
In this section, we review other example selectors from the
active learning literature, how these relate to EM and prior
art from areas related to active learning in EM such as crowd-
sourcing. Under strong assumptions about data distribution,
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(a) Our Unified Active Learning Benchmark Framework (b) 4D view of UnifiedActive Learning

Figure 1

the earliest active learning algorithms such as selective sam-
pling [8], query-by-committee (QBC) [13, 28] and margin-
based example selection[15, 31] have been shown to either
learn the optimal classifier, or reduce the number of candi-
date classifiers by a fixed fraction with each labeled example.
It is unclear whether such theoretical results hold in practice
as QBC and margin-based example selection are reduced to
heuristics in this significantly more challenging setting of
EM [11]. There exist other active learning algorithms such
as IWAL (importance weighted active learning) [6] and Con-
vexHull [5] which either choose a poor objective of label
prediction accuracy (instead of F1-score) for EM which is
pervasive of class skew or incur excessive labels in practice.

Several prior works on EM have explored the use of crowd-
sourcing however, the focus is usually not on learning an
EM model but to reduce the number of labels asked from
the crowd [7, 19, 32–37]. Due to the lack of a reusable EM
model, one drawback of such approaches is having to incur
costs associated with crowd-sourcing labels every time an
instance of EM needs to be solved. Our framework is meant
for learning a non-trivial EM model with active learning and
we emulate crowdsourcing by modeling imperfect Oracles
without label correction methods such as majority voting or
label inference. Corleone [14] (and its more scalable version
Falcon [10]) use random forests due to their interpretable
properties to mine the blocking functions automatically, and
to perform EMwhile incurring the least monetary cost for la-
beling. In our experiments, we too pit random forests against
rules to compare them in terms of interpretability. But more
importantly, our goal underlying the inclusion of random
forests into our framework is to find out how well they can
perform EM and and how many labeled examples they incur
via active learning.

Currently, our EM framework includes feed-forward neu-
ral networks admittedly simpler than recently proposed

deep learning architectures that perform EM with repre-
sentation learning [18, 23]. We evaluate the performance
of non-convex non-linear classifiers against other kinds of
(shallow) classifiers when learned with active learning. But
currently, as we shall see in our experiments, the EM results
acquired with complex architectures are clearly behind our
best approaches (see Fig. 16 where we compare Mudgal et al.
[23] with learner-aware QBC on random forests).

3 BENCHMARK OVERVIEW
Figure 1a presents the system architecture of our unified
active learning benchmark framework. In contrast to super-
vised learning which requires a significant amount of up-
front training data, active learning requires a limited amount
of initial labeled data (∼ 30 examples in our framework)
from which the learner produces an initial model. The ex-
ample selector chooses ambiguous, unlabeled examples that
the model finds hard to predict the label for and queries an
𝑂𝑟𝑎𝑐𝑙𝑒 (human or ground truth) for those labels. The newly
labeled data is added to the cumulative set of training data
obtained thus far upon which a refined model is learned. In
each active learning iteration, the learned model is evaluated
by an evaluator w.r.t. a variety of metrics pertaining to label
prediction quality, informative example selection latency,
model interpretability and #labels which will be explained
in detail. We have four basic components in our framework -
feature extractor, learner, example selector and 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑜𝑟 . We
use the Object-Oriented paradigm of inheritance to model
each component as a base class and extend it into a child
class to support specialized functionalities.

Feature Extractor:We apply a blocking function as a pre-
processing step to eliminate obvious non-matches among
the Cartesian product of record pairs created from the tables
to be matched. We obtain the feature vectors by applying
21 similarity functions from Java Simmetrics library [1] on
all the matching schema attributes across the two tables. If
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one or both of the pre-aligned attributes of a record pair
are null or missing, the similarity evaluates to 0. We use the
same set of feature vectors across all the classifiers in the
framework barring rule-based models from Qian et al. [25]
which only support 3 (equality, Jaro-Winkler and Jaccard)
out of the 21 similarity functions. While linear, non-convex
non-linear and tree-based classifiers use floating point fea-
ture vectors (an example dimension can be JaccardSim(left-
table.attr,right-table.attr)), rule-based models evaluate each
similarity function on a discrete set of thresholds in (0,1]
and create Boolean feature dimensions (e.g., JaccardSim(left-
table.attr,right-table.attr)≥ 𝜏 with 𝜏 from 0.1 to 1.0).
Learner and Example Selector: As mentioned in sec-

tion 1, we support a learner from each of the following di-
verse categories - linear, non-convex non-linear, tree-based
and rule-based classifiers. Figure 2 shows how we derive a
sub-class for each classifier from the learner base class. Since
the base class hosts the common functionalities across all
the learners, each sub-class only needs to contain methods
specific to a learner. On similar lines, we support a learner-
agnostic example selector and two learner-aware selection
strategies. While the learner-agnostic selection strategy of
query-by-committee (QBC) can be applied to any classifier,
random forests inherently learn a committee of trees in a
learner-aware manner. Therefore, a relaxed variant of QBC

Figure 2: Class Hierarchy of Learners & Selectors
is applied to such tree-based learners. In contrast, learner-
aware selection strategies can work only with specific learn-
ers. For instance, margin-based selection is compatible with
linear and non-convex non-linear classifiers (and is extended
accordingly in Figure 2) but not with random forests or rules.
Heuristic-based technique of LFP/LFN is devised only for
the rule-based classifier in Qian et al. [25] and does not have
any child classes. Our framework records the compatibilities
between specific example selectors and classifiers through
the class hierarchy shown in the figure.

Evaluator: We evaluate the active learning methods on
quality, latency, #labels and interpretability.
Quality: The quality of the model is determined by the

usefulness of the examples retrieved by the example selector.
In each active learning iteration, once we obtain a refined
model, we test it on the entire set of data (both labeled and
unlabeled pairs obtained post-blocking). Matching pairs get
a label of 1 and non-matching pairs are assigned 0 as the
label. Precision, recall and F1-score are computed based on

the number of matching pairs predicted accurately.
Latency: The time taken by an example selector to retrieve
the ambiguous examples in each iteration together with the
training time of the model on the cumulative set of labeled
examples determine the overall user wait time. The example
selection time for QBC can be broken down into committee
creation time, which is the time taken to create a committee
of classifiers and example scoring time which is the time
taken to compute the disagreement (entropy) metric for all
the unlabeled examples and pick the most ambiguous ones
out of them. For learner-aware approaches such as margin
and LFP/LFN the latency only comprises the example scoring
time as there is no classifier committee to be created. For
tree-based approaches, the committee of random trees is cre-
ated during the training phase. Hence, the example selection
time for random forests is the time required to compute the
entropy among the committee of trees. This will be further
described in the subsequent sections.

#Labels: This is the minimum number of labeled examples
required by each active learning method to learn a model
that converges to its best achievable quality. If adding more
labels no longer changes the quality of the model learned
in terms of its Test F1-scores, the model can be deemed to
have reached its convergent state. The lower the #labels, the
more effective is the active learning strategy used. If all the
unlabeled examples are required to achieve the best possible
classifier, it means that the active learning policy used is
ineffective and it is better to resort to supervised learning
instead, in such scenarios.

Interpretability: This is a metric that determines how read-
able and interpretable the model is to the end user. Concise
rules are preferred over mathematical models by humans es-
pecially in scenarios where explainability takes precedence
over model quality or effectiveness. Interpretability is de-
fined as being inversely proportional to the number of 𝑎𝑡𝑜𝑚𝑠

in a rule [29], where an atom is defined as a Boolean pred-
icate that consists of a similarity function applied over an
attribute pair accompanied by a threshold. Since random
forests are ensembles of decision trees which consist of simi-
lar logical predicates, we compare tree-based approaches to
the rule-based models [25] w.r.t. interpretability.

4 COMPARED APPROACHES
In this section, we describe the various active learning meth-
ods, i.e., example selection policies and how they are ap-
plied to each learner we implement in our benchmark. As
mentioned in sections 1 and 3, we categorize the example
selectors as being learner-agnostic or learner-aware. While
query-by-committee (QBC) is a learner-agnostic approach
and can be applied to all classifiers, margin and Likely False
Positives/Negatives (LFP/LFN) are learner-aware strategies.
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4.1 Query-by-committee (QBC)
Mozafari et al. [22] propose query-by-committee (QBC) as a
generic strategy that can be applied to any learner. Variants
of it have been proposed earlier in Sarawagi and Bhamidipaty
[26]. QBC formulates the ambiguous example space based on
the disagreement among a committee of classifiers regarding
the labels of examples. As illustrated in Figure 3, QBC draws

Figure 3: query-by-committee

B (=5 in the figure) bootstrap training samples with replace-
ment out of the aggregate labeled data from which a commit-
tee of B classifiers is learned. Each classifier in the committee
predicts the labels of all the unlabeled examples and disagree-
ment is computed based on the entropy among the classifiers
upon the assigned label to each example. In lieu of entropy,
we use variance defined by Mozafari et al. [22] over an an
unlabeled example 𝐸𝑥𝑖 as𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝐸𝑥𝑖 ) = 𝑃𝑖

𝐶
(1 − 𝑃𝑖

𝐶
) where

𝐶 is #classifiers in the committee and 𝑃𝑖 is #classifiers which
assign a positive class label (matching pair in the context of
EM) to 𝐸𝑥𝑖 .

Examples with the highest variance are passed for labeling
after which they are included into the aggregate training
set. When several examples have the same measure of high
disagreement, a random subset of those examples is selected.
A way to reduce randomness is to increase the # classifiers
in the committee to get fewer examples with the same vari-
ance. However there are two hindrances: 1) larger bootstrap
committees take longer to train, 2) not every classifier in the
committee can be unique as the samples are drawn from the
same training set and may contain overlapping examples.
In general, larger committees are expected to select more
informative examples than smaller committees.

4.1.1 Tree-based Classifiers. As mentioned before, QBC is
learner-agnostic and can be applied to all learners such as lin-
ear, non-convex non-linear and rule-based classifiers. How-
ever, tree-based classifiers such as random forests naturally
learn an ensemble of trees in a learner-aware manner dur-
ing their training phase. Hence, the overhead of creating
a committee of classifiers from re-sampled labeled data is
unnecessary. We directly use the decision trees in a random

forest as the classifier committee to compute the variance
on the set of unlabeled examples in each active learning
iteration. We use the same settings as the Corleone [14]
system to implement the learner for random forests in our
benchmark framework. Each random forest contains random
decision trees of unlimited depth and uses a random subset
of log2(𝐷𝑖𝑚+1) features for node splitting from a total of
𝐷𝑖𝑚 features. Although Corleone uses 10 decision trees per
forest, we allow #trees to be parameterized.

4.2 Margin
Margin measures the confidence of a classifier based on
how far its predicted labels are from the decision boundary.
Although the notion of margin has been originally proposed
for linear classifiers, non-convex variants of margin [24] have
also been proposed. We apply margin as an active learning
strategy to both linear and non-convex non-linear classifiers.

4.2.1 Linear Classifiers. In the ML literature, version space
of linear learners can be defined as the candidate set of classi-
fiers that can separate the positive from the negative training
examples in the aggregate set of labeled data. Margin-based
selection sorts unlabeled examples based on their informa-
tiveness and selects those examples whose inclusion into
the labeled data leads to a drastic reduction of the version
space in each active learning iteration. This results in an
earlier convergence to the ideal classifier than committee-
based strategies. Margin-based selection for linear classifiers
has been theoretically proved to aggressively halve the ver-
sion space in each active learning iteration in the binary
classification scenario [31] thus terming it as an aggressive
strategy while naming committee-based techniques like QBC
as passive strategies in the ML literature [15].
Margin for a binary linear classifier is defined as the dis-

tance of a feature vector to the separating hyperplane and
the strategy picks the unlabeled examples which are clos-
est to the hyperplane. Margin can be approximated by the
magnitude of the dot product of a feature vector 𝑋 with
the separating hyperplane unit weight vector𝑊 added to
normalized bias 𝑏 as𝑊 .𝑋 + 𝑏. The sign of the dot product is
ignored because ambiguous examples are chosen from both
the classes. It is less likely although possible, that two dis-
tinct feature vectors fetch the same dot product, thus making
margin-based selection more deterministic than QBC.

4.2.2 Non-Convex Non-Linear Classifiers. We use a neural
network with a single hidden layer as a non-convex non-
linear classifier implemented in our framework. During the
forward pass of the training phase, we feed the aggregate
labeled data at the input layer of the neural network. Given
𝑁 labeled record pairs each with a feature vector of 𝐷𝑖𝑚
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dimensions and a label of 1 to indicate matching or 0 for non-
matching, they are passed to a hidden layer which converts
each of these 𝐷𝑖𝑚-dimensional vectors into ℎ-dimensional
vectors using an affine combination of hidden-weights with
the input features followed by a ReLU activation function. ℎ
is the number of neurons in the hidden layer. The interme-
diate feature vectors from the hidden layer are normalized
using a batch-normalization layer [16] before passing them
to the output layer. At the output layer, the intermediate
feature vectors are converted from ℎ dimensions into a sin-
gle dimension using an affine layer. The affine output is

Figure 4: Margin-based selection for Neural Networks

termed as the margin (see margin definition for non-convex
classifiers [24]) which is passed to the sigmoid activation
function that emits an output probability. If the output prob-
ability > 0.5, the record pair is labeled to be matching else,
non-matching. We use L2-loss function and Stochastic Gra-
dient Descent (SGD) with momentum as the optimization
function to update the weights during the backpropagation
phase. We use 50 epochs and a mini-batch size of 8 during
training. For SGD, we use a learning rate of 0.001, a decay
constant of 0.99 and a momentum of 0.95. We also use drop-
out regularization by turning off half of the hidden nodes
randomly during training to prevent overfitting. We could
see more stability in the neural network predictions because
of batch-normalization and drop-out regularization.
Once a trained neural network is obtained in each active

learning iteration, we pass the unlabeled examples to the
input layer as shown in Figure 4. At the output layer once we
obtain the margin and the output probability, we pass the top-
K examples with the least margin to the Oracle for labeling
and include them in the labeled data. The ambiguity of an
example can be inferred directly from the output probability
itself. If it is close to 0.5, the classifier is most ambiguous
about its label. This intuitive logic can be used to cross-verify
the theoretical margin definition from Nguyen and Sanner
[24]. Since margin obtained from the affine output layer is
fed as an input to the sigmoid function, the lower the margin,
the closer to 0.5 its sigmoid evaluation would be.

4.3 Likely False Positives / Negatives
(LFP/LFN)

Figure 5: LFP/LFN heuristic for Rule-based Learners
LFP/LFN is an example selection heuristic devised for rule-

based learning [25]. Active learning is used to learn entity
matching rules expressed as monotone DNF formulas, that is,
disjunctions of conjunctive rules constructed from individual
atomic predicates. An example of a conjunctive candidate
rule matching user profiles across two distinct social me-
dia platforms P1 and P2 may be P1.firstName = P2.FName AND

P1.lastName = P2.LName AND P1.city = P2.city, based on equality
of first and last names and cities. In order to improve preci-
sion of the candidate rule, LFP/LFN picks matches predicted
by the rule on the unlabeled data that are likely to be non-
matches (by using a feature similarity heuristic), and passes
these Likely False Positives (LFPs) to the Oracle for labeling.

As a result of such labeling, in the next iteration, the sys-
tem will learn a higher precision rule. For example, a new,
more selective predicate may be added to the earlier con-
junctive candidate rule: lastNameFrequencyFilter(P1.lastName,80),
filtering out the most frequently occurring last names (e.g.,
in the top 80 percentile). Similarly, LFP/LFN also identifies
pairs of records that are not predicted to be matching by
an existing rule but are likely to be matches. These are the
Likely False Negatives (or LFNs) which are again labeled
by the Oracle. The LFNs are obtained by executing relaxed
variants of the candidate rule 𝑅 called 𝑅𝑢𝑙𝑒-𝑀𝑖𝑛𝑢𝑠 rules (see
Figure 5); by dropping predicates from 𝑅, these relaxed rules
find missed positive examples, and ultimately enhance recall.
New conjunctive rules are thus learned from labeled LFPs
and LFNs leading to enhanced precision and recall.

5 TIME AND QUALITY ENHANCEMENTS
We propose two enhancements, blocking and active ensem-
bles, to improve the runtime and quality of example selec-
tion strategies for active learning. While generally applicable
to any underlying active learning model and any example
selector, we describe them in the context of margin-based
selection for linear classifiers.
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5.1 Blocking
Blocking has been used for EM [21] to prune, out of the
Cartesian product of all possible pairs of records, those pairs
that are unlikely to be matches. In contrast to the work so far,
we propose blocking for the specific purpose of discovering
ambiguous examples for selection strategies without having
to compute the ambiguity metric for the entire space of
unlabeled data. Hence, unlabeled examples that are unlikely
to be ambiguous will be preemptively ignored using blocking.
While most blocking techniques were devised for rule-

based learners, Jain et al. [17] propose two variants of Lo-
cality Sensitive Hashing (LSH) to speed up margin-based
selection for linear classifiers. Contrary to their approach,
the blocking technique we propose forgoes even a full fea-
ture vector construction on each unlabeled example and
avoids dot product computations aggressively. We apply our
learner-aware blocking on top of margin strategy and not for
QBC because a majority of the time in QBC is spent in the
construction of a classifier committee which is dependent
on the already labeled data. So pruning unlabeled data gives
meager benefits for QBC.

Figure 6: Multiple blocking dimensions for SVMs

Margin-based example selection computes ambiguity based
on the distance of each unlabeled example from the separat-
ing hyperplane. Our blocking technique skips the margin
(dot product) computation for examples whose feature di-
mensions evaluate to 0 because if all the dimensions of a
feature vector 𝑋 are 0s,𝑊 .𝑋 + 𝑏 = 𝑏 i.e., margin equals bias
𝑏 whose sign decides the class label of 𝑋 without ambiguity.
However, instead of constructing all the feature dimensions
for every unlabeled example, we only evaluate the blocking
dimension and check if it is equal to 0. We assume that the
blocking dimension has the highest predictive power among
all the feature dimensions and if it is 0, then all other fea-
ture dimensions evaluate to 0. The weights of all the feature
dimensions are readily available in the weight vector𝑊 of
the linear classifier; a possible blocking dimension is the one
with the highest absolute weight.

Since a single blocking dimension may not be predictive
enough in determining the values of all remaining feature
dimensions, we pick multiple feature dimensions with top-K
absolute weights as the blocking dimensions (see Figure 6).
As we want to prune away high-confidence examples from
both the matching and non-matching classes, the top-K (=3

in the figure) blocking dimensions have the largest magni-
tude in the weight vector disregarding the sign. As per the
figure, all the blocking dimensions evaluate to 0 for the third
example. Hence, we skip it and compute full feature vectors
and dot products for all other examples and select those with
the least absolute dot products (margin) for labeling.

5.2 Active Ensemble of Linear Classifiers
In contrast to learning an ensemble using supervised algo-
rithms, the active ensemble is learned incrementally over
several active learning iterations. In the context of entity
matching, active learning for an ensemble of several high
precision rules, rather than for a single rule, has been shown
to significantly enhance recall [4, 25]. Along the same lines,
we learn an active ensemble of linear classifiers.

Figure 7: Active ensemble of linear classifiers

Figure 7 illustrates the active ensemble into which three
linear classifiers are accepted by the time active learning ter-
minates. We ensure that distinct classifiers are learned into
the ensemble by eliminating the positive label predictions
(denoted by + in the figure) or pairs which are predicted to
be matching by the accepted classifiers in the ensemble from
unlabeled and labeled data before attempting to learn a new
classifier. The next model is thus learned from the remaining
pool of uncovered examples in the subsequent iterations.
Eventually, the union of the positive predictions made by all
the accepted linear classifiers in the ensemble are labeled as
belonging to the positive class. This can lead to high recall
at the expense of losing precision if the accepted classifiers
do not exceed a preset precision threshold 𝜏 . The precision
is computed on the selected examples in each active learn-
ing iteration whose labels are provided by the Oracle. If the
precision computed on the matches predicted by a candidate
linear classifier is ≥ 𝜏 , it is accepted into the ensemble and
its covered examples are removed from the labeled and un-
labeled example sets. We set 𝜏 to 0.85 uniformly on all the
EM datasets. Ensemble is a general enhancement and can
also be applied to QBC but the prohibitively high commit-
tee creation times of QBC confined our implementation of
ensemble to margin-based strategies.

Similar time and quality enhancement techniques can also
be tried for non-convex non-linear models though we have
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not explored those in this paper. A possible blocking solu-
tion for non-linear classifiers would be to include the largest
weights for each exponent - 𝑋𝑛 , 𝑋𝑛−1,..., 𝑋 2, 𝑋 1 as the block-
ing dimensions. Blocking during example selection for rule-
based or tree-based models is trivial as the blocking pred-
icate (similarity function and threshold evaluation) can be
executed on all the unlabeled examples to prune away non-
qualifying examples. Active ensemble for neural networks
can be applied as discussed in the current section without
much of a modification. Learning active ensembles for rules
already exists in Qian et al. [25].

6 EXPERIMENTS
We use a cluster with 24 Intel Xeon 2.4GHz CPUs each con-
taining 6 CPU cores and 99 GB main memory, but a limited
Java heap space of 4 GB. We use Weka [3] for the imple-
mentation of SVM and random forests while we use Apache
SystemML [2] for neural networks. As we have mentioned
in Section 1, we answer the following questions:
• Among the example selection strategies applicable to
each classifier, which is the best performing approach
w.r.t. both EM prediction quality and latency?

• Can active learning methods achieve comparable quality
metrics as supervised learning? If so which is the best
combination of learner and example selector?

• How many labels are required by each active learning
method on a dataset to reach a convergent F1-score?

• How does rule-based learning [25] compare to tree-based
learners on quality and interpretability?
Our experiments can be classified into two broad cate-

gories where we assume the presence of either “perfect” or
“imperfect (noisy)” Oracle. We use perfect Oracles without
labeling error for our experiments on Abt-Buy, Amazon-
Google Products from the Products category and DBLP-
ACM, DBLP-Scholar and Cora from the Publication domain.
For experiments using noisy Oracles, we choose Abt-Buy,
Walmart-Amazon (Products), Amazon-BestBuy (Electronics),
BeerAdvocate-RateBeer (Beer) and BuyBuyBaby-BabiesRUs
(Baby Products) upon which earlier works likeMagellan [20]
and DeepMatcher [23] achieve an F1-score of 0.6 - 0.7.
Each dataset contains left and right tables that produce

a Cartesian product of record pairs, whose size is denoted
by “#Total Pairs” in Table 1. To reduce the size of candidate
pairs to be matched, during the feature extraction phase (see
Section 3), we prune away the obvious non-matches using
Jaccard similarity function with a numerical threshold in an
offline blocking step on the tokenized attributes from each
pair.We set the threshold to 0.1875 to roughly retain the same
number of post-blocking pairs as Mozafari et al. [22], Wang
et al. [34] on Abt-Buy, DBLP-ACM and DBLP-Scholar. We

use conservative similarity thresholds of 0.12 on Amazon-
GoogleProducts and 0.16 on Cora and Walmart-Amazon to
avoid pruning too many non-matching pairs. Due to the
unavailability of the entire ground truth for the Amazon-
BestBuy, Beer and Baby Products datasets, we use Labeled
Data L from Das et al. [9] as the set of post-blocking pairs.

Train-Test Splits and Termination Criteria: We start active
learning with a seed of 30 labeled examples. In each active
learning iteration, we query the Oracle (which happens to be
the available ground truth on these datasets) for the labels of
a batch of 10 examples chosen from the unlabeled set, upon
which the learned model is refined and evaluated on the test
set. We use the following settings for train-test splits.
• We evaluate active learning methods on the test set cre-

ated from all the post-blocking pairs, while progressively
querying the Oracle for a sample of them to be added
to the training set in each labeling iteration. While an
earlier crowd-sourcing work Vesdapunt et al. [33] defines
progressive recall, we analogously define 𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝐹1
as the test F1-score obtained on post-blocking pairs.

• For active vs. supervised learning experiments, we create
the conventional train-test splits (with the same class
skew as post-blocking pairs) used in supervised learn-
ing scenarios. 80% of the post-blocking pairs form an
unlabeled set, out of which examples are selected in each
learning iteration, while the remaining 20% form a held-
out test set upon which the learned models are evaluated.
We use this only for the experiments in Fig. 16 and 17.
The termination criteria differ between perfect and imper-

fect Oracles. In the case of perfect Oracles, once an active
learning method achieves a convergent F1-score, there is
little change to it with the addition of more examples. In
contrast, in the case of imperfect Oracles, the addition of
more examples leads to deteriorating F1-scores because of
an added amount of noisy labels. Therefore, we terminate
active learning with perfect Oracles in Fig. 8 to 13 as soon as
either one of the approaches achieves a near-perfect (close
to 1.0) F1-score or all the examples are labeled. In the experi-
ments on noisy Oracles from Fig. 14 to 17, the termination
criterion is the exhaustion of all unlabeled examples. Rule-
based learners terminate as soon as no likely false positives
(LFPs) or likely false negatives (LFNs) are found among the
selected examples. This results in no new rules being discov-
ered, that leads to early termination. We present the results
on perfect Oracles in Section 6.1 while Section 6.2 contains
those on noisy Oracles. Section 6.3 covers interpretability.

6.1 Comparison of Selectors & Classifiers
In this section, we assume the presence of a perfect Oracle
with no labeling error. We first compare various example
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Table 1: Details of the Public EM Datasets.

Dataset Matched Columns #Total Pairs #Post-Blocking Pairs Class skew

Abt-Buy {name, description, price} 1.18 M 8682 0.12
Amazon-GoogleProducts {name, description, manufacturer, price} 4.39 M 14294 0.09

DBLP-ACM {title, authors, venue, year} 6 M 11194 0.198
DBLP-Scholar {title, authors, venue, year} 168 M 49042 0.109

Cora {author, title, venue, address, publisher, editor, date, vol, pgs} 0.97 M 114525 0.124

Walmart-Amazon
{brand, modelno, title, price, dimensions, shipweight,
orig_longdescr, shortdescr, longdescr, groupname}

56.37 M 13843 0.083

Amazon-BestBuy {brand, title, price, features} 21.29 M 395 0.147
BeerAdvocate-RateBeer {beer_name, brew_factory_name, style, ABV} 13.03 M 450 0.151

BuyBuyBaby-BabiesRUs
{title, price, is_discounted, category, company_struct, company_free,

brand, weight, length, width, height, fabrics, colors, materials}
54.5 M 400 0.27

selectors applicable to each classifier. Subsequently we com-
pare the best strategies from each family of classifiers in
order to understand the combination of classifier and exam-
ple selector that works best on a majority of the datasets.
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Figure 8: QBC vs. Margin (Progressive F1, Abt-Buy)
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Figure 9: QBC vs. Margin (Progressive F1, Cora)
Comparison of Example Selectors: Figs. 8 and 9 show the

progressive F1-scores of various example selectors applied
to non-convex non-linear (neural networks), linear (SVMs)
and tree-based (random forests) classifiers respectively. Upon
neural networks and SVMs, we compare the learner-agnostic
strategy of QBC against margin as the learner-aware strat-
egy. Since neural networks take a long time to train, larger
committees are prohibitively expensive in terms of example
selection latency. Therefore, we implemented a smaller com-
mittee of size 2 for QBC on neural nets, whereas for SVMs
(see Fig. 8b, 9b), we implemented both QBC(2) and QBC(20)
with 2 and 20 learners in the committee. In the case of ran-
dom forests, margin is inapplicable and the trees in the forest

are equivalent to the classifier committee in QBC but created
in a learner-aware manner. The F1-scores are plotted for 233
active learning iterations until 2360 labeled examples are
consumed (including the initial training set of 30 examples)
because this is the maximum #labels needed among all the
approaches for the best convergent progressive F1 score.

As we can see from Figs. 8 and 9, margin-based selection
achieves similar F1-scores as QBC in conjunction with all
learners on both Abt-Buy and Cora. The observations are
similar on Amazon-GoogleProducts, DBLP-ACM and DBLP-
Scholar although we do not plot them for space reasons. The
only exception is in the case of neural networks on the Cora
dataset (Fig. 9a) where QBC(2) outperformsmargin. Likewise,
we plot example selection times on Cora because it has the
highest number of pairs post-blocking (114K) incurring the
longest example selection time among all the datasets. The
latency trends we observe in Fig. 10 hold on the remaining
datasets as well. Figs. 10a and 10b present the QBC selection
time broken down into committee creation (dashed lines
in the figures) and example scoring times (solid lines) (see
latency metric in Section 3 for definitions).
While the committee creation times increase with more

active learning iterations and labeled examples, example
scoring times decline with more labels as the unlabeled set
shrinks gradually. Thus, margin-based strategy consumes
lesser example scoring times than QBC on both neural net-
works and SVM. Adding the committee creation time to the
scoring time of QBC leads to margin outperforming QBC by
10-100x on aggregate selection times. In contrast to neural
networks and SVMs for which we explicitly learn the com-
mittees from resampled training data, in the case of random
forests, the committee is learned during the training phase
and example selection only involves scoring the unlabeled
examples based on committee labeling variance. Therefore
the difference in example selection time (Fig. 10c) among
the forests of different #trees (2, 10 and 20) is not too high
either. The training times are also not too different because
of optimized learner-aware ensemble learning. Ensembles
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Figure 10: Example Selection Times of various Strategies on each Classifier (Cora)
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Figure 11: Effect of Blocking and Active Ensemble on Linear Classifiers (Progressive F1-Scores, Perfect Oracle)
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Figure 12: Comparison of Classifiers with Best Selection Strategies (Progressive F1-Scores, Perfect Oracle)
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Figure 13: Comparison of Classifiers with Best Selection Strategies (User Wait Time)

with 20 trees, Trees(20), achieve a near-perfect progressive
F1 on all the datasets as compared to smaller tree ensembles.
Effect of Blocking and Ensembles on SVM: As we have

discussed in Section 5.1, blocking dimensions are used to
prune the ambiguous example space during margin com-
putation. Thus, if we assume that all the dimensions in the
weight vector are blocking dimensions, the margin has to
be computed for every example as none of the examples
gets pruned away. This turns out to be equivalent to not
using blocking in the first place. We compare the margin
baseline that uses all dimensions for blocking against using
a single blocking dimension. As we can notice from Fig. 10d,
using a single blocking dimension denoted by margin(1Dim),

brings savings in example selection time without sacrific-
ing quality (see Fig. 11). With the exception of the Cora
dataset (Fig. 11e) where margin(1Dim) performs worse than
the baseline margin(188 Dim), blocking performs same as
vanilla margin flavors - margin(62Dim) from Abt-Buy and
margin(83Dim) from Amazon-GoogleProducts, DBLP-ACM
and DBLP-Scholar on all the other datasets (Fig. 11a to 11d).
As we have described in Section 5.2, active ensembles

learned incrementally over several active learning iterations
prune predicted matching pairs from both labeled and unla-
beled examples. This results in the example selection time
using active ensembles decreasing aggressively in the later
active learning iterations as shown in Fig. 10d. While active
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Approach Abt-Buy Amazon-GoogleProducts DBLP-ACM DBLP-Scholar Cora

Trees(20) 0.963 (2360 labels) 0.971 (2360 labels) 0.99 (260 labels) 0.99 (1770 labels) 0.98 (1700 labels)

Linear-Margin(Ensemble) 0.663 (1470) 0.69 (330) 0.977 (210) 0.922 (560) 0.945 (1220)
Linear-Margin(Blocking) 0.61 (640) 0.7 (930) 0.975 (170) 0.936 (920) 0.89 (220)

Linear-QBC(2) 0.61 (1420) 0.7 (1550) 0.976 (170) 0.935 (1090) 0.941 (2190)
Linear-QBC(20) 0.61 (1620) 0.7 (1260) 0.976 (180) 0.936 (1600) 0.95 (2130)

Non-Convex Non-Linear-Margin 0.63 (670) 0.72 (2360) 0.978 (1100) 0.938 (970) 0.709 (410)
Non-Convex Non-Linear-QBC(2) 0.63 (970) 0.725 (1350) 0.97 (90) 0.949 (740) 0.95 (1640)

Rules(LFP/LFN) 0.17 (230) 0.51 (50) 0.962 (350) 0.586 (490) 0.18 (170)
Mudgal et al. [23] 0.628 0.693 0.984 0.947 N/A
Singh et al. [29] N/A 0.694 N/A 0.9436 0.9718
Kopcke et al. [21] 0.713 0.622 0.976 0.894 N/A
Kasai et al. [18] N/A N/A 0.985 0.929 0.987

Mozafari et al. [22] 0.56 N/A N/A N/A N/A
Corleone [14] N/A N/A N/A 0.921 N/A
Waldo [32] 0.8 (2200) N/A N/A N/A 1.0 (1600)

Whang et al. [37] N/A N/A N/A N/A 0.9 (1000)
Chai et al. [7] N/A N/A 0.9 (150) N/A 0.92 (354)

Table 2: Best Progressive F1-Scores from our Benchmark using Perfect Oracles vs. State-of-the-art Approaches

ensembles of SVM achieve slightly higher progressive F1 on
Abt-Buy and DBLP-ACM (see Fig. 11), they perform slightly
worse than baseline margin on Amazon-GoogleProducts and
DBLP-Scholar and show no effect on Cora. This is because
of a uniform precision threshold of 0.85 we use across all
the datasets. This threshold is conservative enough for Abt-
Buy and DBLP-ACM, which can be inferred from two high
precision SVMs accepted into the ensemble by the termina-
tion of active learning. However, this may not be a suitable
threshold for DBLP-Scholar and Amazon-GoogleProducts
on which there is no significant boost in the progressive
F1-score despite accepting 7 (or 3) SVMs into the ensemble.

Comparison of Classifiers: The results we have reported so
far fix the classifier and vary the example selector. In Figs. 12
and 13, we compare the best performing example selectors
from each of the classifiers (margin for neural nets, margin
with ensemble or blocking for linear SVMs, learner aware
QBC(20) for random forests and LFP/LFN for rule learners)
against each other w.r.t. progressive F1-score and user wait
time (which is the sum of train time and example selection
time, see Section 3 for definition). Having compared these
best example selectors from each classifier, we observe from
Fig. 12 that random forest with QBC(20) labeled as Trees(20)
outperforms all other learners upon progressive F1-scores
on all the datasets. We find that rules lead to the largest user
wait time, least progressive F1-scores and early termination.
However, they perform much better on interpretability and
produce an ensemble of concise, high precision DNF rules
that can be easily understood and debugged by the end user.
We delve into the details of rule-based results in the section
on interpretability. Neural networks incur the second largest
latency because of the long training they undergo, while
random forests require the user to wait for the shortest time
despite training an ensemble of 20 trees. This emphasizes the

importance of learner-aware training rather than learner-
agnostic training used in QBC. SVMs with blocking and
ensembles incur the least user wait times in the beginning
but with the arrival of more labels, the training time increases
thus increasing the wait time between iterations.
#Labels: Table 2 presents the best progressive F1-scores

from the active learning approaches implemented in our
benchmark (highlighted in green) and the best F1-scores re-
ported by earlier related works (highlighted in red). For our
benchmark results, we also present within parentheses, the
minimum # labels required by the approaches from a per-
fect Oracle, to converge to the corresponding F1-scores. For
results on noisy Oracles, please refer to Section 6.2. Learner-
aware committees (size 20) of tree-based learners achieve
the best results close to 1.0 on all the datasets but also con-
sume the largest # labels. However, we can also notice from
Fig. 13 that these approaches achieve them with least user
wait time. Among the active learning methods for linear clas-
sifiers, margin-based optimizations of blocking and active
ensemble achieve comparable progressive F1 as QBC while
requiring fewer labels and lesser user wait time on almost
all the datasets. Although QBC(2) of non-convex non-linear
classifiers consumes fewer labels than its margin counterpart
on 3 out of 5 datasets and achieves similar F1 scores, training
committees of neural nets incurs huge training times. Rule
learning using LFP/LFN terminates as soon as no LFPs or
LFNs are found on the learned ensemble of high precision
rules. This keeps its #labels low and because of the limited
number of similarity functions supported by the heuristic, it
achieves low progressive F1-scores.
Results from Related Work: Among the related work, we

found supervised, transfer and crowd-sourced learning-based
approaches which have reported results on our experimental
datasets. Note that each of these works use their own set
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Figure 14: Active Learning using a Probabilistically Noisy Oracle (Abt-Buy, Progressive F1-Scores)
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Figure 15: Tree Ensembles on Magellan/DeepMatcher Datasets (Noisy Oracles, Progressive F1)
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Figure 16: Active vs. Supervised Learning on Magellan/DeepMatcher Datasets (Perfect Oracles, 20% Test Labels)

of train and test splits which may vary from our test set
that happens to be the entire set of post-blocking EM pairs
comprising both labeled and unlabeled examples. The pur-
pose of Table 2 is thus to contrast the best F1 results from
the related work with those from our benchmark. For an
experimental comparison of active learning with the state-
of-the-art supervised learning, see Fig. 16. Among the su-
pervised learning approaches in Table 2, we mention results
from DeepMatcher (Mudgal et al. [23]), Singh et al. [29]
and Köpcke et al. [21]. While Mudgal et al. [23] use deep
learning, the latter two compare rule-based models with ma-
chine learning models. However, the results we report here
are not necessarily from those approaches but also from their
contenders who achieved the best results on these datasets.
For instance, the best result from Singh et al. [29] is from
supervised random forests. Likewise, some of the best re-
sults in Kasai et al. [18] are from their implementation of
supervised deep learning models that they try to surpass
through transfer learning. Mozafari et al. [22], Corleone [14],
Waldo [32], Whang et al. [37] and Chai et al. [7] use crowd-
sourcing approaches which are slightly different from active

learning as they rely on the crowd for labels unlike active
learning which assumes the presence of experts for labeling.

6.2 Experiments with Noisy Oracles
In order to model crowd-sourced scenarios, we use an im-
perfect Oracle which perturbs the original label with a fixed
probability whenever it is asked to label an example. We vary
the noise from 10% to 40% following the DeepMatcher [23]
settings. It should be noted that we always perturb the origi-
nal label whenever the imperfect Oracle generates a random
probability that falls within the noise percentage threshold.
This is a harsher criterion than real-world crowdsourced
settings which regulate the noisy labels using techniques
such as majority voting and label inference. Each F1-score
observed with a noisy Oracle is averaged over 5 random runs
using distinct random seeds to account for the randomness
and ensure experimental reproducibility.
Our results on the Abt-Buy dataset in Fig. 14 show that

tree ensembles produce a near-perfect F1-score using a per-
fect Oracle, and their performance degrades gracefully with
increasing noise percentages (Fig. 14a). Tree ensembles have
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a relative advantage until 20% noise beyond which their F1
equalizes to that of other classifiers. In contrast, the other
classifiers do not even come close to near-perfect F1-scores
on perfect Oracles. While linear SVMs show a quick drop
beyond 10% noise (30% and 40% overlap in Figs. 14c & 14d),
neural networks do not suffer a steep decline in F1-scores
at higher noise percentages because of regularization tech-
niques such as drop-out and batch normalization. We do not
present results of rule-based classifiers as they produce low
progressive F1-scores even with perfect Oracles.
On similar lines, we notice from our experiments on the

Magellan/DeepMatcher datasets in Fig. 15 that using the
0% noisy (perfect) Oracle, tree ensembles of size 20 produce
high progressive F1-scores close to 1.0 from early on with
as few as 100 labels on Amazon-BestBuy and Beer datasets
(Fig. 15b, 15c). However, the convergence onWalmart-Amazon
and BabyProducts (Fig. 15a, 15d) happens only after 2500 and
300 labels respectively indicating that these are indeed chal-
lenging datasets. Upon higher noise percentages, the gradual
drop in the F1-scores with an increase in labeled examples
is a testimony to the fact that crowd-sourcing in practical
scenarios warrant a much earlier termination and error cor-
rection techniques such as majority voting. However, the
sweet spot in terms of when to terminate active learning in
such scenarios may differ across datasets. For instance, while
the progressive F1-scores show a monotonically declining
F1-score curve on Walmart-Amazon, Amazon-BestBuy and
Beer datasets, they show monotonically increasing F1-scores
on the Baby Products dataset in Fig. 15d.
Comparison with Supervised Learning: We conduct these

experiments following the conventional train-test splits of
supervised learning where example selection is done out
of a training set containing 80% of post-blocking examples
and the evaluation is on a held-out test set of 20% of the
tuple pairs which never participate in example selection. In
Fig. 17, we compare active learning against supervised learn-
ing on Abt-Buy using ensembles of 20 trees upon various
imperfection levels of an Oracle. In each iteration, while
active learning uses learner-aware QBC to label examples
that lead to highest labeling disagreement (entropy) among
the 20 decision trees, supervised learning picks random ex-
amples in each iteration. The results show that the former
outperforms the latter within the first few iterations while
achieving test F1-scores comparable to those that supervised
learning achieves after training on the entire set of 80% train-
ing examples. This difference between supervised and active
learning is insignificant at 20% noisy Oracle (see Fig 17c).

Comparison with DeepMatcher [23]: Fig. 16 compares tree
ensembles against a state-of-the-art supervised learning ap-
proach, DeepMatcher, upon perfect Oracles. We ran Deep-
Matcher with the same settings in [23] by dividing the la-
beled examples into 3:1 (train to validation set size ratio)
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Figure 17 Active vs. Supervised Trees (Abt-Buy, 20% Test Labels)

and evaluating it on the same 20% test set as tree ensembles.
Similar to supervised tree ensembles, DeepMatcher picks a
random set of unlabeled examples to label in each iteration.
While we did not notice a significant variation among the
test F1-scores from different executions of tree ensembles,
we noticed a standard deviation of 0.002 (Amazon-BestBuy),
0.016 (Walmart-Amazon), 0.06 (Baby Products) and 0.125
(Beer) across 5 runs of DeepMatcher over all the learning
iterations. Hence we report an average F1-score across these
5 runs in Fig. 16. The results confirm that active learning
using random forests requires fewer labels to achieve signifi-
cantly higher test F1-scores than supervised learning. While
supervised and active tree ensembles perform similarly on
the smaller datasets, DeepMatcher, requires the entire 80%
training labels to achieve its best test F1-scores.

6.3 Interpretability: Rules vs. Trees
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Figure 18: Interpretability Experiments

While model interpretability has been established to be
crucial for supervised learning-based EM by earlier works
such as Singh et al. [29], it is also important for active learn-
ing. In the case of supervised learning, interpretable models
are used for explainability purposes in order to understand
why a particular model produces higher quality of matches
than a different model and also for debugging purposes to
reduce false positives and false negatives, and thereby en-
hance precision and recall. While all these benefits also exist
for active learning, a direct usage of interpretable models
is to decide whether or not to accept a model into the ac-
tive ensemble in a learning iteration and when to terminate
active learning under the absence of ground truth. In this
section, we contrast the #atoms in rule DNFs learned by
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LFP/LFN with those of the DNF formulae obtained using
random forests. We convert the trees learned by random
forests into DNF formulae by traversing the path from the
root of the tree until all the leaf nodes whose predicted label
is 1 or𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔. The path turns into a conjunction of rule-
based predicates, and the disjunction or union of all such
formulae leads to a DNF. We do not further optimize the
DNFs into concise Boolean formulae unlike Singh et al. [29]
as the latter may seem concise but need to be mentally un-
rolled into DNFs by a human. This is because, DNFs are more
intuitive to a human. It is therefore possible that there are
overlapping atoms across different conjunctive predicates
in a DNF and they are counted with repetition to compute
#atoms for both rules and random forests. As mentioned in
Section 3, an atom can be defined [29] as a DNF predicate or
a similarity function evaluated on a pair of attributes from
two records and compared against a numerical threshold.
We can observe from Figs. 18a & 18b that # DNF atoms in
the learned trees as well as their depths increase with more
active learning iterations, since larger tree ensembles con-
tain more atoms than the smaller ones. The depth of a tree
ensemble is the maximum among the depths of all the trees
in the random forest. We can notice from Fig. 18a that rules
have significantly fewer atoms than random forests on all
the datasets and are thus easily interpretable by a human.
Following is the ensemble of rules learned by LFP/LFN

active learning heuristic for the Abt-Buy dataset. Each of
these rules has a test precision ≥ 0.88 and is accepted into
the ensemble at a distinct iteration. Similar concise DNF rule
ensembles were obtained on other datasets as well. We do not
present the DNF rules for trees as they are prohibitively large.

Abt-Buy (# DNF Atoms = 5):

Rule 1: Abt.price = Buy.price

∧ JaccardSim(Abt.name, Buy.name) ≥ 0.4

∨
Rule 2: JaccardSim(Abt.name, Buy.name) ≥ 0.7

∨
Rule 3: JaccardSim(Abt.name, Buy.name) ≥ 0.6

∧ JaccardSim(Abt.description, Buy.description) ≥ 0.1

6.3.1 LFP/LFN vs. QBC (Rules) on Social Media Dataset. We
use an EM dataset from Qian et al. [25], where the goal is to
match 467,761 employee records from a large enterprise to a
set of 50M user profiles from a social media platform. The at-
tributes comprise name, location, email address, occupation,
gender and a URL to the personal homepage for each user
profile. We use this dataset to compare the learner-agnostic
QBC with committee sizes ranging from 2 to 20, against the
learner-aware heuristic of LFP/LFN on rule-based classifiers.
In the absence of ground truth for this real-world dataset, we
evaluate example selection strategies indirectly based on the

LFP/LFN QBC(2) QBC(5) QBC(10) QBC(20)

101

102

103

104

lo
g
-s

c
a
le

360.0 372.0

538.0

819.0

1714.0

7.0

3.0

5.0
6.0

7.0

4.0

2.0

3.0 3.0
4.0

84.0

44.0

70.0
86.0

101.0

630.0 558.0

897.0

1683.0

3001.0
2525.0

1116.0

2691.0

4916.0

12004.0

Social Media Dataset - QBC vs. LFP/LFN (Rules)

Avg User Wait Time (secs)

# Iterations

# Valid Rules

Coverage

Avg User Wait Time (secs) / Valid Rule

Total User Wait Time (secs)
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actual rules they produce. Each learned rule is interpreted by
a human expert and manually validated by labeling adversar-
ial examples (i.e., LFPs). Once accepted by the human expert,
it can be reasonably assumed that they reached high preci-
sion. Thus, the quality of a selection strategy is determined
by the number of manually accepted (validated) rules along
with their aggregate number of predicted matches (called
coverage) on the dataset. Since active learning on this dataset
requires human validation of the model at each step, it is
essential that the model used is interpretable. Therefore, we
do not conduct this experiment with the remaining learners.
From Fig. 19, we note that LFP/LFN performs comparably
to larger bootstrap committees of sizes 10 and 20 on cov-
erage and # valid rules, respectively, while being 1.9x and
4.7x faster w.r.t. the total user wait time (across all iterations)
which includes rule learning, rule execution and example se-
lection times. QBC of committee size 2 is faster than LFP/LFN
but produces fewer valid rules with less coverage. Fig. 19
also plots average user wait time taken to learn a valid rule,
average user wait time per iteration and # iterations.

7 CONCLUSION
In this paper, we proposed a unified active learning bench-
mark framework that can mix-and-match several learners
with multiple example selectors for entity matching (EM).
Using the framework, we found that active learning upon
learner-aware ensembles of tree-based models achieves close
to perfect progressive F1-scores on all the public EM datasets
we experimented with. Our best active learning methods
require fewer #labels for a convergent F1-score than their
supervised learning counterparts up until 10% labeling noise
and also surpass a state-of-the-art supervised learning algo-
rithm on perfect Oracles. We also found that tree-based learn-
ers achieve high quality at the expense of interpretability
and applications where concise, highly precise EM rules are
required may still resort to rule-based learning. Our experi-
ments on a real-world social media dataset lacking ground
truth emphasize the need for interpretable models which are
manually validated in each active learning iteration.
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