
Human-in-the-Loop Machine Learning Systems for Data Integration and Predictive
Analytics

by

Venkata Vamsikrishna Meduri

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved May 2022 by the
Graduate Supervisory Committee:

Mohamed Sarwat, Chair
Chris Bryan
Huan Liu

Fatma Özcan
Lucian Popa

ARIZONA STATE UNIVERSITY

August 2022

©2022 Venkata Vamsikrishna Meduri

All Rights Reserved

ABSTRACT

Data integration involves the reconciliation of data from diverse data sources in

order to obtain a unified data repository, upon which an end user such as a data analyst

can run analytics sessions to explore the data and obtain useful insights. Supervised

Machine Learning (ML) for data integration tasks such as ontology (schema) or entity

(instance) matching requires several training examples in terms of manually curated,

pre-labeled matching and non-matching schema concept or entity pairs which are hard

to obtain. On similar lines, an analytics system without predictive capabilities about

the impending workload can incur huge querying latencies, while leaving the onus of

understanding the underlying database schema and writing a meaningful query at

every step during a data exploration session on the user.

In this dissertation, I will describe the human-in-the-loop Machine Learning

(ML) systems that I have built towards data integration and predictive analytics. I

alleviate the need for extensive prior labeling by utilizing active learning (AL) for data

integration. In each AL iteration, I detect the unlabeled entity or schema concept pairs

that would strengthen the ML classifier and selectively query the human oracle for

such labels in a budgeted fashion. Thus, I make use of human assistance for ML-based

data integration. On the other hand, when the human is an end user exploring data

through Online Analytical Processing (OLAP) queries, my goal is to pro-actively assist

the human by predicting the top-K next queries that s/he is likely to be interested

in. I will describe my proposed SQL-predictor, a Business Intelligence (BI) query

predictor and a geospatial query cardinality estimator with an emphasis on schema

abstraction, query representation and how I adapt the ML models for these tasks.

For each system, I will discuss the evaluation metrics and how the proposed systems

compare to the state-of-the-art baselines on multiple datasets and query workloads.

i

ACKNOWLEDGMENTS

This dissertation would not have been possible without the support of several people.

I thank my thesis advisor, Professor Mohamed Sarwat, for the continuous support

and guidance he offered through my Ph.D. journey. His enthusiasm about building

usable, large-scale systems for the database community taught me the importance of

formulating impactful research problems. He taught me to be ambitious, unbiased,

to work hard with integrity to reach my goals and to take paper acceptances and

rejections in the same spirit. He clearly understands my abilities and limitations as

a student and he always mentored me constructively so that I could benefit from

my strengths and simultaneously work on fixing my weaknesses. He involved me in

several collaborative projects with my fellow students in the Data Systems lab which

expanded my breadth of knowledge and my publication profile. I thank Professor

Sarwat for imparting me the right set of academic values while being a brotherly

figure and helping me fulfill my long-held aspiration of obtaining a Ph.D. degree.

I thank Professor Chris Bryan, Professor Huan Liu, Dr. Fatma Özcan and Dr.

Lucian Popa for agreeing to be on my dissertation committee and for their valuable

suggestions which shaped up my dissertation. I thank Dr. Lucian Popa, Dr. Prithviraj

Sen, Dr. Min Li, Dr. Yunyao Li, Dr. Berthold Reinwald, Dr. Fatma Özcan, Dr. Abdul

Quamar, Dr. Chuan Lei, Dr. Vasilis Efthymiou and Dr. Xiao Qin who mentored me

during my four summer internships at the IBM Almaden Research Center. These

internships taught me how industrial research works, honed my coding and research

skills, contributed to my Ph.D. dissertation and helped me secure a full-time job.

I thank Professor Selcuk Candan for sharing the MINC dataset and for his insights

and early feedback which helped my work on SQL prediction. I thank Professor

Dragan Boscovic and Stewart Nunn (Salt River Project) for their support during my

ii

Research Assistantship project. I thank Professor Paolo Papotti, Dr. Rohit Singh, Dr.

Nan Tang, Dr. Stefano Ortona, Professor Subbarao Kambhampati and Dr. Sushovan

De for introducing me to data integration during the initial phases of my Ph.D.

I thank my fellow students Dr. Jia Yu, Dr. Yuhan Sun, Kanchan Chowdhury,

Ankita Sharma, Setu Shah, Shantanu Aggarwal, Zishan Fu, Nikhil Vementala, Varun

Gaur, Anique Tahir, Raha Moraffah, Dr. Enzo Veltri, Dr. Antonio Giuzio, Dr. Vinaya

Chakati and Dr. Nooshin Shomal Zadeh for their support. I thank Brint MacMillan

and his team at SCAI IT for their technical support with the Data Systems lab servers.

I thank my parents, Balakrishna Murty Meduri and Vasanta Lakshmi Meduri, for

their endless love and support. I thank my sister Ramasravani Meduri, brother-in-law

Professor Chaitanya Sharma Yamijala (Department of Chemistry, IIT Madras), ma-

ternal uncles Narayana Murty Musti, Professor Narasimha Murty Musti (Department

of Computer Science and Automation, IISc Bangalore), Varaha Narasimham Musti,

Someswara Rao Musti, aunt Kamala Devi Gollapudi, paternal uncles Viswanatham

Meduri, Ramalinga Swamy Meduri (Lecturer in Botany, affiliated to Andhra Uni-

versity), Sankara Sastry Meduri, aunts Hymavathy Meduri, Indira Meduri, in-laws

Venkateswarlu Prerepa, Seshukumari Prerepa, Nishant Prerepa, Prashant Prerepa,

and my grand parents Kameswaramma Meduri, Suryanarayana Meduri, Appala

Narasamma Musti, Chittibabu Musti, Professor Musti S. Rao (Department of Chemi-

cal Engineering, IIT Kanpur), Poornima Musti, Venkateswarlu Kappaganthula and

Annapurna Kappaganthula for encouraging me to pursue my dreams.

Finally, I thank my wife, Anjani Priyanka Prerepa, who has extended her unstinted

and unconditional support throughout my doctoral studies. Last but not the least,

my gratitude also goes to my loving pet husky Nikki, whose mischievous and playful

deeds added fun and color to my Ph.D. journey.

iii

COPYRIGHT INFORMATION

This dissertation is an outcome of the work that I have done in the Data Systems

Lab directed by Professor Mohamed Sarwat at Arizona State University and an

extension of the summer internships done in the Scalable NLP group and the Database

Systems group at the IBM Almaden Research Center.

The work included in Chapter 5 (on SQL Query Prediction) and Chapter 7 (on

Geospatial Query Cardinality Estimation) is solely owned by the Data Systems Lab

at Arizona State University. The work discussed in Chapter 3 (on Active Learning

for Entity Matching), Chapter 4 (on Active Learning for Ontology Matching) and

Chapter 6 (on Business Intelligence Query Prediction) is patented by the IBM Almaden

Research Center. Due permissions from the respective organizations were obtained

prior to writing my dissertation. For information about re-use or re-production of the

work in Chapters 5 and 7, please reach out to Professor Mohamed Sarwat. For more

information about the work in Chapter 3, please reach out to Dr. Lucian Popa and

regarding the potential re-use of ideas in Chapters 4 and 6, please reach out to Dr.

Berthold Reinwald at the IBM Almaden Research Center.

iv

TABLE OF CONTENTS

Page

CHAPTER

1 INTRODUCTION . 1

2 BACKGROUND AND RELATED WORK . 9

2.1 Overview of the Dissertation . 9

2.1.1 Problem Statement . 12

2.1.1.1 Motivation to the Proposed Solutions 13

2.2 Related Work . 18

2.2.1 Human-in-the-Loop Entity Matching . 19

2.2.1.1 Limitations of Supervised Learning 19

2.2.1.2 Need for a Comprehensive EM Evaluation Framework 20

2.2.1.3 Evaluation of Imperfect Oracles . 20

2.2.1.4 Advanced Representation Architectures 22

2.2.2 Human-in-the-Loop Ontology Matching 22

2.2.2.1 Need for Ontology Matching . 22

2.2.2.2 Limitations of Heuristic-based Approaches 23

2.2.2.3 Need for Active Learning . 24

2.2.2.4 Limitations of Existing Active Learning Techniques . . 25

2.2.3 Next Query Prediction and Recommendation 28

2.2.3.1 Intent Prediction for Interactive Data Exploration . . . 28

2.2.3.2 Query Recommendation and Autocompletion 29

2.2.3.3 Latency Reduction for Data Exploration 31

2.2.3.4 ML for Cardinality Estimation and Query Workload

Generation . 32

v

CHAPTER Page

2.2.3.5 Conversational Recommendation . 33

2.2.4 Cardinality Estimation . 34

2.2.4.1 Relational Cardinality Estimation. 35

2.2.4.2 Geospatial Cardinality Estimation 36

2.2.4.3 Machine Learning for Cardinality Estimation 37

2.2.4.4 Active Learning for Classification vs. Regression 38

3 A COMPREHENSIVE ACTIVE LEARNING BENCHMARK FRAME-

WORK FOR ENTITY MATCHING . 39

3.1 Benchmark Overview . 39

3.2 Compared Approaches . 44

3.2.1 Query-by-committee (QBC) . 44

3.2.1.1 Tree-based Classifiers . 45

3.2.2 Margin . 46

3.2.2.1 Linear Classifiers . 46

3.2.2.2 Non-Convex Non-Linear Classifiers 48

3.2.3 Likely False Positives / Negatives (LFP/LFN) 49

3.3 Experimental Evaluation . 51

3.3.1 Experimental Settings . 51

3.3.2 Comparison of Classifiers in conjunction with Best Example

Selectors . 53

3.3.3 Comparison with Supervised Learning . 54

3.3.4 #Labels for Convergence . 56

3.3.5 Interpretability: Rules vs. Trees . 57

vi

CHAPTER Page

4 ALFA: ACTIVE LEARNING FOR SEMANTIC SCHEMA ALIGN-

MENT . 60

4.1 Ontology Matching vs. Entity Matching . 60

4.2 Graph Neural Network for Ontology Matching 62

4.3 System Architecture of Alfa . 64

4.3.1 Onto-aware Example Selector . 67

4.3.2 Onto-aware Label Propagator . 70

4.3.3 Onto-aware Blocking. 73

4.4 Baseline Example Selectors. 75

4.4.1 Entropy-based Selection . 75

4.4.2 Query-by-Committee . 75

4.4.3 OASIS . 76

4.5 Experimental Evaluation . 78

4.5.1 Experimental Setup . 78

4.5.1.1 Datasets . 78

4.5.1.2 Evaluation Metrics . 79

4.5.1.3 Baselines . 80

4.5.1.4 Configurations and Settings . 81

4.5.2 Evaluation of Ontology-Aware Sample Selection. 81

4.5.3 Evaluation of Ontology-Aware Label Propagation 85

4.5.4 Evaluation of Semantic Blocking . 87

4.5.5 Alfa: End-to-End System Usability . 90

5 EVALUATION OF MACHINE LEARNING ALGORITHMS FOR SQL

QUERY PREDICTION . 92

vii

CHAPTER Page

5.1 Recurrent Neural Networks . 92

5.1.1 Historical-RNNs . 94

5.1.2 Synthesizing Next Query Fragment Vectors using RNN -Synth 94

5.2 Reinforcement Learning . 100

5.2.1 Tabular Variant of Experience Replay and Random Action

Exploration . 103

5.2.2 Prediction (Test) Phase . 105

5.2.3 Reward function . 106

5.2.4 Setting Learning Rate and Discount Factor 106

5.3 Collaborative Filtering Baselines . 108

5.3.1 Cosine Similarity based CF . 109

5.3.2 Matrix Factorization based CF . 110

5.4 Datasets . 112

5.4.1 Session-Cleaning Heuristics . 114

5.5 Schema-aware Query Fragment Embeddings . 117

5.5.1 SQL Operator Fragments . 119

5.5.2 Selection Predicate Constants and Comparison Operators . . 120

5.6 Parameter Settings . 122

5.7 Experimental Evaluation . 125

5.7.1 Results of Sustenance Evaluation . 125

5.7.1.1 Quality and Latency Results . 126

5.7.2 Results of Singularity Evaluation . 129

5.7.3 Query Re-generation and Result Comparison 134

5.7.3.1 Query Re-generation . 136

viii

CHAPTER Page

5.7.3.2 Query Result Evaluation . 139

6 BI-REC: GUIDED DATA ANALYSIS FOR CONVERSATIONAL BUSI-

NESS INTELLIGENCE . 142

6.1 Preliminaries . 142

6.1.1 A Conversational BI System. 142

6.1.2 Semantic Abstraction Layer (SAL) . 143

6.1.3 Modeling BI Patterns . 145

6.1.4 Modeling Prior User Interactions for BI-REC 146

6.1.5 Problem Definition for Conversational BI Recommendation . 149

6.2 System Overview of BI-REC . 149

6.3 State Representation . 152

6.3.1 Graph-Structured State Representation 152

6.3.2 Representation Learning on State Graphs 154

6.3.2.1 State Graph Embedding Generation 155

6.3.2.2 Representation Network Model Training 156

6.4 BI Pattern Prediction. 157

6.5 Experimental Evaluation . 161

6.5.1 Dataset and Workloads . 161

6.5.1.1 Datasets . 161

6.5.1.2 Workloads . 162

6.5.2 Experimental Setup and Methodology. 163

6.5.2.1 Settings and Configuration . 163

6.5.2.2 Evaluation Metrics and Methodology. 163

6.5.2.3 Baselines . 165

ix

CHAPTER Page

6.5.3 BI-REC System Evaluation . 165

6.5.3.1 BI-REC Performance on Different Workloads 165

6.5.3.2 Exhaustive CF Baseline Comparison 167

6.5.4 User Study . 168

6.5.5 BI-REC Component Evaluation . 170

6.5.5.1 Evaluation of State Representation. 170

6.5.5.2 Evaluation of Top-k BI Intent Prediction 173

6.5.5.3 Evaluation of Top-k BI Pattern Prediction 174

6.6 Appendix . 175

6.6.1 Implementation Details for IntentBI Predictors 175

6.6.2 Workload generation: Real and Synthetic User Session Cre-

ation . 177

6.6.2.1 Ontology Graph Parsing and Augmentation 177

6.6.2.2 Creation of Probability Distributions for Synthetic

User Sessions . 179

6.6.2.3 Creation of Session Graphs . 180

6.6.3 Availability . 181

7 LEARNING CARDINALITY ESTIMATION FOR SPATIAL QUERIES 182

7.1 System Overview . 183

7.1.1 Supervised Cardinality Estimation . 183

7.1.1.1 Feature Extraction. 184

7.1.1.2 Regression Models . 185

7.1.2 Active Learning for Cardinality Estimation 186

7.1.2.1 Example (Query) Selectors . 187

x

CHAPTER Page

7.1.3 hybRID Selection of Spatial Queries . 190

7.1.3.1 Variants of hybRID . 192

7.2 Experimental Evaluation . 193

7.2.1 Experimental Setup . 194

7.2.1.1 Datasets and Query Workloads . 194

7.2.1.2 Evaluation Metrics . 196

7.2.1.3 Baselines . 198

7.2.1.4 Configurations and Settings . 198

7.2.2 Evaluation of Supervised Learning . 199

7.2.2.1 Comparison of SL approaches . 200

7.2.2.2 SL vs. SpSS . 201

7.2.3 Evaluation of Active Learning . 201

7.2.3.1 Comparison of AL selectors . 202

7.2.3.2 Comparison of regression models . 208

7.2.3.3 AL vs. SL . 211

7.2.4 Discussion . 212

7.2.4.1 Cost-Benefit Analysis . 212

7.2.4.2 Guidelines to Practitioners . 213

8 CONCLUSION AND FUTURE WORK . 219

8.1 Human-in-the-loop Data Integration . 219

8.2 Human-in-the-loop Predictive Analytics . 220

REFERENCES . 222

xi

Chapter 1

INTRODUCTION

Data integration is applied to heterogeneous data sources to derive a unified

database. The same real-world entity is represented differently across the diverse data

sources, making the process of data integration non-trivial. Instead of simply unioning

the data from these sources, we have to perform a matching step which reconciles the

differences among the data sources, eliminates redundancy and creates a de-duplicated

version of the unified data source in which each unique entity is stored exactly once.

Let us consider an example scenario from Figure 1 in which we are trying to match

product records from the relational databases of two commercial vendors V1 and V2.

Although this example shows the matching step between two data sources, note that

this can be extended to multiple data sources by matching a pair of data sources at a

time to unify those two sources initially and incrementally repeating the same step

upon a pair at a time until all the remaining data sources are exhausted and we arrive

at a unified data source.

Figure 1: An Example Data Integration Scenario

1

We can notice from Figure 1 that within the first record pair, the brand name

of the products being matched are slightly different because the company name is

abbreviated in the Vendor V1 database but is written in its expanded form in the

Vendor V2 database. In the second record pair, the company name is the same but

the product is different (DSLR vs. web camera). The first record pair is actually

labeled as a match while the second record pair is a mismatch. Therefore, we can

infer that in this scenario, the product type and brand name need to be compared

first before comparing the prices. This non-obvious task of data integration requires

two steps.

1. Schema Matching - Detection of the column names to be matched across the

schemata of the two data sources.

2. Entity Matching - Matching the data instances (records) utilizing the infor-

mation about pre-aligned column names obtained from schema matching.

In Figure 1, we can match the attributes (columns) titled “Brand name” to

“Company” and “Price” to “Cost” across both the data sources and “Product” from

the Vendor V1 schema to “Type” and “Description” from the Vendor V2 schema.

This pre-alignment of attributes to be matched from the relational schemata is known

as schema matching and it sets the stage for the actual data instance matching. Once

we know how the column names need to be mapped across the data sources, we can

proceed to the actual records by matching “HP ” against “Hewlett Packard”, “Color

Laser Jet” against “Printer” and “Mid-range color laser for businesses” and “$649 ”

against “$699 ” for the first record pair. The latter step of matching the record content

across the pre-aligned attributes is known as entity matching.

Both schema matching and entity matching can be modeled as binary classification

tasks and there have been several works based on supervised learning [100, 76, 77, 134]

2

for entity matching and for schema matching [125, 11]. However, supervised learning

for binary classification-based data integration is known to consume a significant

amount of training data in the form of pre-labeled examples belonging to both positive

and negative classes which would be matching and non-matching pairs respectively

in this context. Without such pre-labeled data capturing diverse matching and non-

matching patterns, we end up learning a sub-optimal classifier that yields low matching

quality. However, manual curation and generation of the pre-labeled data would be

expensive, especially if a Subject Matter Expert (SME) or a domain expert is preparing

those labels. Although crowdsourcing may be a relatively inexpensive option, ensuring

that the obtained labels are accurate necessitates several crowdsourcing workers in

the background and the application of label correction techniques such as majority

voting [53, 154] which are still expensive.

(a) Supervised Learning (b) Active Learning

Figure 2: Supervised vs. Active Learning for Data Integration

In order to alleviate the need for a huge amount of training data, in this dissertation,

I propose the selective inclusion of a human as an oracle into the data integration loop

through active learning. Figure 2 shows a contrast in the requirement of pre-labeled

data between supervised and active learning. While we require labeled data upfront in

terms of matches and non-matches w.r.t. either schema concept pairs or tuple pairs for

supervised learning (Figure 2a), active learning starts with very few initial labeled pairs

also known as seed labels. In each active learning iteration, the learning algorithm,

3

i.e., the learner, learns a binary classifier a.k.a. model based on the cumulative labels

acquired thus far. The learned model A is applied upon the unlabeled pairs to predict

their labels. An example selector quantifies the difficulty in labeling the unlabeled

pairs, and fetches a pre-determined number of batched unlabeled pairs in each active

learning iteration, that the model finds hard-to-classify. Such unlabeled pairs that

the classifier finds difficult to predict the labels for, are also termed as ambiguous

examples, which are passed to a human-in-the-loop or an oracle for labeling. Since

the oracle is assumed to be a domain expert, these labels are added to the seed set of

training examples iteratively, until the cumulative labeled pairs eventually contain all

possible pairs or until a pre-allocated budget of labeled pairs is exhausted.

(a) Current state-of-the-art Conversational
Interface

(b) A sample conversation powered by Pre-
dictive Analytics

Figure 3: Predictive Analytics for OLAP user sessions

Let us assume that we utilize a human-in-the-loop and arrive at a de-duplicated,

unified database that is ready for querying by an end user such as a database analyst or

a business analyst who wishes to derive useful insights out of the database. Figure 3a

shows the current state-of-the-art conversational interface upon a unified relational

database engine. While SQL is popular and boasts widespread usage among database

4

analysts in querying databases, recent developments such as Quamar et al. [116]

democratize database access to SQL-agnostic users such as business analysts who may

not be aware of querying languages, but might be experts in the Business Intelligence

(BI) domain that the database was perhaps built for. Such users may prefer to interact

with the database using Natural Language (NL) queries which can be supported by

conversational interfaces such as the ones built in [116].

Regardless of whether the user prefers to use SQL or NL, the current state-of-the-

art cannot support a two-way conversation as the role of the database is currently

limited to returning the query results as tuples or visual charts, without the ability to

assist the human w.r.t. other possibly related queries that the user may be interested

in issuing. Given that an end user typically wants to explore the data and derive

meaningful insights, she issues Online Analytical (OLAP) queries the formulation of

which requires prior knowledge of the underlying database schema and the spontaneity

to issue queries without incurring too much user think time, that is the time between

the issuance of consecutive queries. This time is utilized by the user to examine

the current set of results displayed by the database, re-align her data exploration

goals and formulate her next SQL/NL query. While there are existing works such

as Dice [67] which predict the next OLAP action in terms of roll-up, drill-down

etc., the scope of these actions is limited to GROUP-BY clause prediction. In this

doctoral dissertation, I will predict the entire SQL/NL query as a whole and perform

either explicit or implicit query recommendation to the end user. My work can be

used either to facilitate the pre-execution of the predicted query and prefetching its

results into main memory thereby reducing the data exploration latency (implicit

recommendation) or to recommend the predicted query to the user to alleviate the

efforts of understanding the schema and writing each query from scratch.

5

Figure 4: Overview of Spatial Cardinality Estimation for Predictive Analytics

Once the next query is predicted, we may speed up its execution in order to make

the data exploration seamless to the end user. However, the bottleneck associated

with accelerating the query execution is the time spent in optimizing the query. Query

optimization enumerates a search space of possible query plans and selects the cheapest

plan which is expected to consume the least amount of execution time. Assignment of

appropriate costs to a query plan calls for highly accurate cardinality estimates [59,

102, 101]. If the cardinality estimation can be made both fast and accurate, we will be

able to save upon the query optimization time and in turn make the data exploration

seamless for the user.

Relational cardinality estimation has received a significant amount of interest in the

recent times. This is due to two reasons - 1) Sampling and histogram-based cardinality

estimation techniques adopted by query optimizers based on column values [1, 120,

175] suffer from the 0-Tuple problem [75] which arises from empty base table samples

for highly selective queries whose selection predicate columns have not been sufficiently

sampled. Another limitation is the attribute (column) independence assumption made

by histograms. 2) Machine Learning (ML) and Deep Learning (DL) models overcome

the 0-Tuple problem and can also capture the non-linear dependencies (correlations)

among the columns in the selection predicates of the query. While works such as Kipf

et al. [75, 74] apply supervised learning to cardinality estimation, Negi et al. [102, 101]

focus on the benefits brought by learned cardinality estimation to the query optimizer

6

in selecting the optimal query plan. Ortiz et al. [108] compare ML/DL models against

heuristic-based relational cardinality estimation. Surprisingly, an extensive evaluation

of ML/DL models is not yet explored for spatial cardinality estimation.

In this dissertation, as a part of predictive analytics, I will also study cardinality

estimation for spatial range and distance queries illustrated in Figure 4. A range

query returns a subset of points R (from a point set S) contained within a polygon

P , whereas a distance query finds a subset of points R which lie within a pre-defined

distance represented by radius, r, from a centroid or point of interest, L1. Although

I do not study spatial joins in this dissertation, range and distance queries can be

extended to joins when the inputs P and L1 are respectively represented as sets of

polygons and points. Existing spatial cardinality estimation works [169, 5, 33] also

rely on sampling-based solutions where histogram bins are represented by spatial

grid cells or minimum bounding rectangles (MBRs) encompassing the spatial objects

in a region, and are plagued by the 0-Tuple problem. However, existing ML-based

solutions for relational cardinality estimation cannot be directly applied to the spatial

setting.

Spatial queries capture topological relationships among the geometries based

on their geo-coordinates (<longitude, latitude>) and selection predicates (such as

ST_CONTAINS and ST_DWITHIN) which are different from relational attributes

and query operators. Likewise, spatial queries contain external parameters such as the

distance or radius which are not a part of the database schema. ML-based cardinality

estimation requires a large training corpus in the form of pre-executed queries and

their cardinalities, which incur long offline pre-processing latencies to execute the

training queries before model learning commences. To address this problem, Yang

et al. [170, 171] learn the joint probability distribution of distinct tuples in a table

7

and estimate relational selectivities in an unsupervised manner. Such work cannot

be applied to spatial distance queries because radius is not originally encoded as an

attribute in the database schema. Therefore, I tailor a semi-supervised approach for

spatial cardinality estimation using active learning.

In the next chapter, I will discuss the concrete problem statement, background

and related work. Further, I will discuss the proposed approach, baselines, datasets

and evaluation metrics in sufficient detail for the research problems.

8

Chapter 2

BACKGROUND AND RELATED WORK

In Chapter 1, I have introduced the broader area of human-in-the-loop data

integration and predictive analytics. In this chapter, I will present an overview to the

concrete problems that I will solve in this doctoral dissertation along with the related

literature review. This will help contextualize each problem while motivating the

approach that I will be taking to solve the corresponding problem. In the subsequent

chapters, I will present the detailed solutions to each of the problems.

2.1 Overview of the Dissertation

Figure 5 presents an overview of the research problems on human-in-the-loop

data integration and predictive analytics that I solve in this dissertation. In order to

integrate diverse repositories of relational data into a unified dataset, I will selectively

query a human-in-the-loop for the labels of ambiguous pairs of schema concepts

or entities (actual data instances available as tuples), depending on whether I am

performing schema matching or entity matching, respectively. The aim is to achieve a

competent classifier of high quality to perform schema alignment or entity matching

with as few labeled pairs as possible. Thus, I make use of human assistance by

assigning the role of an oracle to a human-in-the-loop for data integration.

On the contrary, when the human is an end user querying the unified database using

OLAP queries, my aim is to proactively assist the human-in-the-loop by predicting

the next query that she is going to issue. The query will be predicted during the user

9

think time which is the time gap between the issuance of consecutive queries. The

benefit in query prediction is that it will in turn facilitate the recommendation of the

query to the end user either implicitly or explicitly. A way to implicitly recommend

the query is to prefetch the results of the top-k predicted queries that the user may

most likely ask in the next step, execute them in the background and prefetch their

results into the main memory. If the user indeed asks any of the predicted queries at

the next time step, we can return the already prefetched results instead of executing

the query from scratch, leading to seamless data exploration and latency reduction.

Other benefits in query prediction and implicit recommendation include building or

updating indices on the columns (attributes) participating in the predicted selection

predicates, speculative query processing or query optimization which can not only

help with finding the optimal query plans in a look-ahead fashion but also deciding

on #threads required for parallel execution of the query.

Figure 5: Overview of Human-in-the-Loop Data Integration and Predictive Analytics

My idea in this dissertation is not to actually build a query prefetching architecture

or a speculative query optimizer, but to propose novel query prediction algorithms

which outperform existing query recommendation baselines and compare their accuracy

w.r.t. the F1-score between the predicted and the expected next queries, and also to

10

compute the F1-score between the results of the predicted and next queries. Building

an actual query prefetcher is considered as a possible future work. In the case of explicit

recommendation, I suggest the top-k predicted queries to the end user asking her if

she would like to adopt any of these suggested queries as a possible next exploratory

action in her analytics session. In this context, I will also measure the usefulness of

the recommended query w.r.t. a variety of evaluation metrics such as diversity and

surprisingness besides the F1-score and prediction latency.

Once the query is predicted, the next step towards executing the query in the

least amount of time is to first prioritize smart query optimization to select the most

optimal plan which incurs the least execution latency. In order to accelerate query

optimization, I need to obtain the cardinality estimates of the query which help in

detecting the least cost plan. I solve this problem in the context of spatial cardinality

estimation of range and distance queries. Instead of using unsupervised sampling-

based solutions [10, 143, 88, 5, 33, 140] which suffer from the 0-Tuple problem, I apply

supervised learning (SL) and active learning (AL) for spatial cardinality estimation.

To apply supervised learning, I devise a simple and effective spatially-aware feature

representation for range and distance queries. In order to alleviate the need for a lot

of training queries and follow a more semi-supervised approach, I train the regression

models using active learning which utilizes the information about the regression model

(model-based) [119, 21] or the unexecuted corpus of spatial queries (query-based) [172,

165] to iteratively select an ambiguous subset of queries whose cardinalities are difficult

to predict, for the regression model at hand. I thus propose a spatially-aware query

selector called hybRID that is both model-dependent and query-dependent and can

iteratively select a batch of spatial queries representative of the unexecuted query

corpus, informative to the regression model in enhancing its quality and diverse from

11

the training set of queries that the regression model has seen so far. hybRID effectively

utilizes the Euclidean distance metric to cluster and select ambiguous spatial queries,

thereby achieving a high quality regression model in the fewest possible active learning

iterations.

2.1.1 Problem Statement

In my proposed doctoral thesis, I plan to address two broad research challenges.

Each challenge has concrete problems associated with it.

1. Can we reduce the amount of pre-labeled data required for data integration by

selectively making use of human assistance?

• Q1: Given a variety of classifiers and example selectors, can we build a

unified active learning framework for entity matching? Which combination

of active learning methods works best for entity matching?

• Q2: Given a high-level abstraction of the database schema as an ontology

graph, can we devise an active learning framework that outperforms the

existing example selection strategies for ontology matching between large-

scale schema graphs?

2. In an ongoing data analytics session, can we proactively assist the human end

user by predicting the next query she is likely to issue, or may be interested in

issuing?

• Q3: Given a set of prior user interaction logs, can we build a SQL-predictor

that can either synthesize novel queries using Recurrent Neural Networks

(RNNs) or can predict queries from the past interactions by using exact Q-

12

Learning? How does it compare to collaborative-filtering based recommender

systems w.r.t. implicit recommendation?

• Q4: Given a high-level abstraction of a Business Intelligence (BI) domain

database schema definition as an ontology along with prior user interaction

logs, can we build a query recommender that can achieve a semantically

meaningful representation for each BI query and can effectively navigate the

search space of possible next queries? How does it compare with an exhaus-

tive collaborative filtering baseline w.r.t. explicit query recommendation?

3. Once the next query is predicted, can we achieve highly accurate cardinality

estimates for the query with the least possible latency in order to accelerate

query optimization and thereby contribute to seamless data exploration?

• Q5: How do we implement spatially-aware feature extraction and supervised

cardinality estimation for range and distance queries? Given a tiny corpus

of pre-executed seed queries Seed<Q,Card>, and several unexecuted queries

UQ, how do we select ambiguous queries, batch<Q,card>, in a spatially-aware

manner to learn a high quality regression model in fewest possible active

learning iterations? How does supervised learning (SL) compare with active

learning (AL) in the context of spatial cardinality estimation?

2.1.1.1 Motivation to the Proposed Solutions

Following is a brief motivation to the approaches I take to solve the research

questions, Q1 to Q5 that I have listed above.

1. Human-in-the-Loop Entity Matching - In the context of active learn-

13

ing for Entity Matching (EM), several active learning methods consisting of a

combination of classifiers and example selectors have been proposed in the past [126,

53, 154], but a comprehensive evaluation of these methods has not been done

yet. In order to answer Q1, I propose a unified active learning framework which

evaluates a host of active learning methods on EM quality (F1-score), latency, model

interpretability and #labels on several publicly available product and publication

datasets upon both perfect and noisy oracles. I will also compare the active learning

methods against supervised learning w.r.t. #labels required to achieve a convergent

F1-score.

2. Human-in-the-Loop Ontology Matching - Entity Matching requires schema

matching to be done as a pre-processing step. While most EM works [155, 76, 100,

134, 96] assume that the schemata were pre-aligned by a human expert, schema

matching can turn out to be non-trivial if the schemata to be matched are large and

complex. Such complex database schemata are usually organized as semantic graphs

termed as ontologies. Existing work on ontology matching such as OntoGNN [60]

use supervised learning to match large-scale ontologies. In order to alleviate the

need for a large amount of labeled pairs, I propose the usage of active learning for

ontology matching. Existing example selection strategies for active learning such as

Query-by-committee [99] are ontology-agnostic. I propose to answer Q2 by building an

ontology-aware active learning framework in which each component such as blocking,

example selection and label propagation strategies are ontology-aware and exploit the

structural and semantic properties of the ontology, besides the learned model.

3. SQL Query Prediction - Existing work on SQL query recommendation

14

using Collaborative Filtering (CF) [43] employs sampling upon the prior set of queries

to achieve scalability on large repositories of query logs. In order to answer Q3

while avoiding the bottleneck of scalability and to achieve next query prediction

in constant time latency, I propose synthesis-based Recurrent Neural Networks

(RNNs) which can synthesize novel next queries which are possibly unseen among

prior logs. To avoid the long training times associated with RNNs, I propose the

adaptation of exact Q-Learning that materializes the Q-Table in-memory towards

next query prediction. I will compare the proposed temporal predictors against

two flavors of CF baselines not only on SQL fragment prediction quality (F1-score)

but also the query execution result quality (implicit recommendation), besides latency.

4. BI Query Prediction - Existing work on conversational interfaces for databases

such as Quamar et al. [116] democratize access to databases for SQL-agnostic users

such as Business Intelligence (BI) analysts who prefer using Natural Language (NL)

queries. However, the onus of writing each query is still on the BI analyst. Therefore,

I propose to answer Q4 by building a recommender system titled BI-REC that

can guide the BI analyst at each time-step during the data exploration session

by recommending the top-k next queries she may be interested in. The query

recommender will use a divide-and-conquer approach where the entire query is not

predicted at one shot. Instead, I will predict the high-level OLAP action using

a multi-class classifier and the detailed query using an index-based Collaborative

Filtering (CF) approach to reduce the latency as compared to an exhaustive CF

approach in Eirinaki et al. [43]. Likewise, the query is represented as a graph consisting

of OLAP operators and the schema elements derived from the BI ontology. I will

not only capture the quantitative/numerical (measures) and qualitative/categorical

15

(dimensions) attributes present in the BI query but also its proximal neighborhood

from the ontology within the BI query graph. The graph is converted into a compact

numerical embedding using Graph Neural Networks (GNNs) [57] that allows me to

recommend diverse and surprising next queries that the user might find informative.

I will evaluate BI-REC against an exhaustive baseline (which does not use sampling)

to show that I can achieve comparable quality (F1-score and normalized cumulative

discounted gain, nDCG) as the latter while outperforming it by achieving low query

prediction latency, high diversity and surprisingness.

5. Spatial Cardinality Estimation - Sampling-based spatial cardinality esti-

mation techniques [10, 143, 88, 5, 33, 140] compute the region-wise frequencies of

spatial objects such as points and create stratified samples that are density-aware.

The strata can be minimum bounding rectangles or uniform grid cells. The queries

are executed on the samples and the result cardinalities obtained on the samples are

scaled to the total size of the data to obtain the actual cardinalities. These techniques

are however prone to the 0-Tuple problem [75] and return null estimates in cases

where the queries cannot be answered because of missing samples (i.e., zero sampled

points satisfy a range or distance query predicate). As mentioned in Kipf et al. [75],

null result sets cannot be extrapolated regardless of how huge the underlying point

dataset is, thereby requiring imputation-based techniques or larger sampling rates

to handle this problem. None of the 16 query workloads used in my experiments

contains zero-cardinality queries and some of the error metrics I use such as Mean

Absolute Percentage Error (MAPE) [141] do not accommodate zero cardinalities.

I implemented spatially-aware stratified sampling (SpSS) with imputation for

16

Sampling % MSE MAPE Q-Error # Unanswered Queries
0.1% 0.2478 2.17E+04 1.6433 5287 (99.4%)
0.5% 0.2397 2.14E+04 1.6222 5099 (95.76%)
1.0% 0.23 2.11E+04 1.5973 4872 (91.49%)

Table 1: Effect of sampling rate on SpSS (ZCTA-AREALM)

Grid Cells MSE MAPE Q-Error # Unanswered Queries
102 0.23 2.11E+04 1.5973 4872 (91.49%)
104 0.2324 2.12E+04 1.6033 4958 (93.11%)
106 0.2494 2.17E+04 1.6473 5313 (99.78%)

Table 2: Effect of grid granularity on SpSS (ZCTA-AREALM)

unanswered queries as an unsupervised cardinality estimation baseline. On one of the

range query workloads, ZCTA-AREALM, that returns the points (area landmarks)

contained by polygons representing United States (US) zip codes, I ran an ablation

study that studies the effect of sampling rate and grid granularity on the cardinality

estimation quality. Table 1 shows the sampling rate varied from 0.1% to 1.0% (Eldawy,

Alarabi, and Mokbel [45] suggest that 1.0% is a competitive sampling rate) and we

can observe that the error rates and #unanswered queries in the workload reduce

with higher sampling rates. Likewise, I varied the total grid cells in the spatial region

from 102 to 106 (Table 2) and noticed that a grid with fewer, larger cells has lower

error rate and #unanswered queries compared to a grid with several smaller cells.

Even in the best case scenario that uses 1.0% sampling rate and 102 grid cells as the

default setting, I encounter more than 90% unanswered queries. I have empirically

noticed that 0-Tuple problem is pertinent for several spatial query workloads which

will be discussed later. Also, I found that increasing sampling rate to 10% led to large

inference latencies which are unacceptable because cardinality estimation is expected

to be done in an online fashion prior to query optimization for it to be useful in

real-life applications such as predictive analytics. To overcome this issue and to answer

the second part of the research question Q5, I propose supervised learning for spatial

17

cardinality estimation formulated as a regression problem. I propose spatially-aware

feature vector generation for range and distance queries that prioritizes encoding

the topological information (geo-coordinates) into the features along with external

parameters such as the radius. I train fully-connected neural networks [75] and also

simpler regression models such as linear, Lasso, polynomial and gradient boosting

trees upon these spatially-aware feature vectors.

Although supervised learning can result in lower online inference latencies, it

requires a significant amount of training data in the form of pre-executed queries and

their cardinalities. Even upon using a cluster of 4 machines for distributed execution

of spatial queries, I observed non-trivial training query execution latencies. To address

this limitation and to answer Q5, I propose the usage of active learning (AL) [126,

119] for spatial cardinality estimation. Instead of executing all the training queries

apriori, I propose a spatially-aware example selector called hybRID which selects a

batch of queries that the regression model finds challenging or ambiguous to predict

the cardinalities for, in each AL iteration. The selected queries are executed on a

spatial database engine treated as an oracle that returns their cardinalities. In each

AL iteration, the regression model is re-trained upon the cumulative training set of

query cardinalities. My goal is to seek the oracle for as few cardinalities as possible

while maximizing the cardinality prediction accuracy.

2.2 Related Work

I will first present the related work upon human-in-the-loop data integration,

followed by that on predictive analytics. The related work on human-in-the-loop

data integration is separately clustered for entity matching and ontology matching.

18

Likewise, the related work on predictive analytics is organized in separate subsections

for next query prediction and cardinality estimation.

2.2.1 Human-in-the-Loop Entity Matching

Entity matching (EM) is an important step in data cleaning where the goal is to link

different mentions of the same real-world entity. Since many real-world downstream

applications can benefit from clean data, improving EM continues to be a topic of

fervent research. In particular, a popular approach to EM has been to formulate it

as an instance of binary classification: Given relations D1, D2 assign one of match

or non-match to each pair of tuples r ∈ D1, s ∈ D2 where r and s represent entity

mentions.

2.2.1.1 Limitations of Supervised Learning

Learning a binary classifier usually entails labeled training data upfront (supervised

learning), which is a significant investment in terms of human labeling effort. Active

learning [130] is a popular alternative that can avoid such prohibitive costs and has a

history of application in EM going back almost two decades (early attempts include

Sarawagi and Bhamidipaty [126] and Tejada, Knoblock, and Minton [145]). In contrast

to supervised learning, active learning employs an example selector that chooses the

pair of mentions whose labels refine the quality of the classifier learned thus far. By

restricting itself to informative pairs of mentions only, active learning hopes to achieve

high quality EM while incurring less human labeling effort.

19

2.2.1.2 Need for a Comprehensive EM Evaluation Framework

While previous work has evaluated supervised learning with classifiers of different

flavors on the EM task (e.g., [77]) and built frameworks such as Magellan [76] that

enable supervised learning-based EM workflows, the same cannot be said for active

learning. Lacking comprehensive comparative evaluations, it is difficult to say which

combinations of classifiers and example selectors work well on the EM task given

that several such combinations have been tried in the past. Query-by-committee

(QBC) [131, 49] is a specific example selector which has been tried in conjunction

with decision trees [145], support vector machines and naive Bayes classifiers [126].

Mozafari et al. [99] propose to implement QBC in a learner-agnostic manner such that

the example selector is completely decoupled from the classifier being used. While

this makes implementation easier, the question remains whether or not we can gain

improved EM quality if the example selector were learner-aware. While QBC has seen

sustained use [126, 145, 99], the active learning literature offers other learner-aware

example selectors based on margin [146] which has not seen much use in EM. Mozafari

et al. [99] is the only previous work I am aware of that compares against margin

example selector while Sarawagi and Bhamidipaty [126] mention it but do not evaluate

it.

2.2.1.3 Evaluation of Imperfect Oracles

Under strong assumptions about data distribution, the earliest active learning

algorithms such as selective sampling [32], query-by-committee (QBC) [131, 49] and

margin-based example selection[146, 54] have been shown to either learn the optimal

20

classifier, or reduce the number of candidate classifiers by a fixed fraction with each

labeled example. It is unclear whether such theoretical results hold in practice as

QBC and margin-based example selection are reduced to heuristics in this significantly

more challenging setting of EM [35]. There exist other active learning algorithms

such as IWAL (importance weighted active learning) [13] and ConvexHull [9] which

either choose a poor objective of label prediction accuracy (instead of F1-score) for

EM which is pervasive of class skew or incur excessive labels in practice.

Several prior works on EM have explored the use of crowdsourcing however, the

focus is usually not on learning an EM model but to reduce the number of labels

asked from the crowd [153, 162, 150, 156, 26, 154, 149, 72] using techniques such as

crowd-sourced blocking functions [72]. Due to the lack of a reusable EM model, one

drawback of such approaches is having to incur costs associated with crowd-sourcing

labels every time an instance of EM needs to be solved. The unified active learning

framework that I propose for EM is meant to learn a non-trivial EM model with active

learning. I will also emulate crowdsourcing by modeling imperfect oracles without

label correction methods such as majority voting or label inference. Corleone [53] (and

its more scalable version Falcon [34]) take the idea of crowdsourcing to the extreme

by proposing to involve no developers while crowdsourcing labels for EM. They use

random forests due to their interpretable properties to mine the blocking functions

automatically, and to perform EM while incurring the least monetary cost for labeling.

In the experiments that I propose to conduct, I too pit random forests against rules to

compare them in terms of interpretability. But more importantly, my goal underlying

the inclusion of random forests into the unified active learning framework is to find

out how well they can perform EM and and how many labeled examples they incur

via active learning.

21

2.2.1.4 Advanced Representation Architectures

Currently, my proposed unified active learning framework for EM includes feed-

forward neural networks admittedly simpler than recently proposed deep learning

architectures that perform EM with representation learning [100, 70]. I will evaluate

the performance of non-convex non-linear classifiers against other kinds of (shallow)

classifiers when learned with active learning.

2.2.2 Human-in-the-Loop Ontology Matching

2.2.2.1 Need for Ontology Matching

Schema alignment or matching is a necessary pre-processing step for entity match-

ing. However, for simple database schemata, column names are expected to be

manually pre-aligned by a domain expert. This is possible in works such as Konda

et al. [76], Wu et al. [166], and Mudgal et al. [100] where the schema itself is not very

complex and the focus is predominantly on matching the actual data instances or

relational tuples. However, schema matching turns out to be non-trivial especially

in the context of large-scale schemata to be matched both in terms of size and com-

plexity. Examples of such large-scale schemata can be found at [107] as ontologies.

An ontology is a semantic graph representation of a database schema which not only

consists of the underlying column names (attributes) as concept nodes in the graph,

but these nodes (concepts) are also semantically connected to each other through

directed edges. Both the nodes and the edges are appropriately labeled and they can

also have textual description associated with them to describe their semantic meaning.

22

2.2.2.2 Limitations of Heuristic-based Approaches

Most of the heuristic-based approaches for schema matching such as Atzeni et al.

[6] were not specifically applied to ontologies as they did not assume a graph structure

for the database. They instead assume the relational schema and use the foreign

key dependencies between the tables to derive schema meta-mappings as canonical

transformations which enable schema mapping generation for unseen schemata. Some

of the systems such as Trifacta [147] and Data Wrangler [36] can support regular

expressions that can suggest how the columns need to be transformed during data

cleaning. Although these systems are dedicated to data preparation majorly consisting

of the data cleaning and standardization step, the transformations upon columns such

as the concatenation between two columns to generate a new column etc., and the

pattern matching feature in data wrangler tools can help with schema mapping. These

systems are still semi-automatic as they need the human participation in schema

matching.

Rahm and Bernstein [117] performed a survey of the heuristic-based approaches

for schema matching. The classification uses the information about the data type

similarity, structural similarity (if the schema is a graph), linguistic similarity w.r.t.

word frequencies or key terms appearing in column names and constraint similarity

which is based on value ranges, value cardinalities or the foreign key constraints

connecting tables in a relational schema. Although these techniques are interesting,

there has been a significant departure from using heuristics to applying Machine

Learning (ML) to schema matching. Companies such as Tams have explicitly suggested

in recent reports such as [136], the reasons to shift towards applying ML to schema

matching. Primarily, learning a model makes it easier to improve the generalizability

23

of schema matching to unseen and novel data sources. Snyder [136] clearly suggests

that the transformation-based standardization techniques from the past can generate

regular expressions or rules which can quickly start failing under a sufficient amount

of dissimilarlity between the training pairs of schemata upon which those rules

were generated, and the test pairs of unseen schemata which may not adhere to the

same structure as what has been seen in the past. Other interesting works applying

supervised learning to schema matching include Sahay, Mehta, and Jadon [125] and

Berlin and Motro [11]. Shraga, Gal, and Roitman [132] and Gal, Roitman, and Sagi

[50] are more recent works that combine deep learning with heuristic-based approaches

to improve generalization to new schemata. However, all these approaches are still

confined to the relational representation of the schema.

2.2.2.3 Need for Active Learning

Hao et al. [60] apply supervised learning to semantic schema graphs or ontologies

by using a Graph Neural Network (GNN) that can derive a concise concept embedding

for each node in the ontology while also predicting a matching score as a probability

between a pair of concept nodes from different ontologies. The concept embeddings

not only capture the structural and semantic properties about the concept nodes but

also about their neighborhood in the graph that is derived through the graph edges.

This rich semantic information helps yield a high matching quality, but unfortunately

supervised learning is plagued by the problem of need for a large amount of training

data or labeled concept pairs in this scenario.

Although there are existing works on active learning for schema mapping such

as Cate et al. [22] which can alleviate the need for a lot of training data, they are

24

inapplicable to ontologies as they only reason about the underlying relational data

instances to learn rules for schema matching. Unlike OntoGNN [60] which consumes

matching and non-matching concept pairs as input training data, Cate et al. [22]

require matching and non-matching tuple pairs of entities (data instances) as input.

This can limit the applicability of schema matching especially if it is used as a

precursor to entity matching. Also, it forgoes the rich semantic information otherwise

available in an ontology and not in a relational schema format. In order to address

these limitations, I propose the creation of an active learning framework for ontology

matching.

2.2.2.4 Limitations of Existing Active Learning Techniques

Aggarwal et al. [4] discuss several state-of-the-art generic active learning techniques

that can be applied to ontology matching as well. However, such active learning

techniques, if used out-of-the-box, will be ineffective in capturing the underlying

semantic information available in the ontology graphs corresponding to the database

schemata to be matched. This is because, most of the generic AL strategies select

the ambiguous concept pairs based on the model performance. If the classifier model

that has been learned so far until the given active learning iteration finds a batch

of example pairs hard-to-classify, such pairs are passed to the oracle for labeling.

Thus, this quantification of pair ambiguity is purely model-dependent and ontology-

agnostic. Examples of such ontology-agnostic example selectors include entropy-based

selection [126, 103], Query-by-Committee (QBC) [99], gradient-based [122] and error-

based selection [55] selection.

Entropy-based selection chooses those examples which have the highest Shannon

25

entropy for probabilistic classifiers. Since I use the deep learning model of GNNs from

OntoGNN [60] as the underlying classifier, entropy-based selection is straightforward

to implement. Those unlabeled pairs which have the the output probability close to 0.5

have the highest Shannon entropy. Likewise, QBC measures the labeling disagreement

among a committee of classifiers and selects those unlabeled pairs with the highest

disagreement. This requires that a committee of GNNs is learned in each active

learning iteration which can be expensive even if the committee is created in parallel.

Gradient-based selection estimates the influence of each unlabeled concept pair on the

GNN by re-training the classifier on that pair and measuring the change in gradient of

the neural network. Those unlabeled pairs with the highest expected gradient change

are passed to the oracle for labeling. Error-based selection goes one step further and

also tests the updated classifier on all the remaining unlabeled pairs after training the

classifier upon every unlabeled pair. Both gradient and error-based techniques are

highly unscalable and require extensive sampling to get reasonable example selection

latencies, which results in a classifier of poor quality.

Another class of active learning strategies is specific to link prediction within

social networks and knowledge graphs (KGs). The problem of link prediction involves

predicting the presence or absence of an edge between a pair of nodes in a graph. In

social graphs, this may refer to predicting whether two members are friends or not

or predicting whether a pair of social media profiles from different platforms refer to

the same person. In knowledge graphs, this may imply the inference of a relation

(edge) between two nodes to create a new RDF triple. Applying the solutions from

link prediction literature to ontology matching would require the creation of a unified

ontology graph and perform link prediction within this unified graph. In the context

26

of ontology matching, the prediction of a link between a pair of nodes may mean that

they are matching, else not.

Active learning strategies for link prediction such as Berrendorf, Faerman, and

Tresp [12] select those pairs which have the highest structural significance in the graph.

For instance, a node pair with the highest degree sum (sum of the degrees of the nodes

in the pair) means that it is a hub in the graph and is of high significance. Other

such selection metrics include high centrality sum and high page rank sum [12]. To

avoid generating the pool of all possible node pairs, Cesa-Bianchi et al. [24] partition

the graph into several spanning trees and only query the labels for cross-tree edges.

Other related work by Ostapuk, Yang, and Cudré-Mauroux [109] tries to maximize

the diversity or stratification of the selected pairs in a KG by clustering the triples and

by selecting representative uncertain triples from diverse clusters or strata. Besides

the fact that these works largely rely on the structural properties of the graph which

may or may not hold in practice, active learning for link prediction in social graphs

such as Cheng et al. [30] make an important assumption called the anchor node

assumption. This means that there is strictly a 1:1 correspondence between users

from two social media platforms, so if a pair of users is a match, neither of these users

can have a match with any other user profile across these platforms. This makes the

“non-matching” label propagation easier across several unlabeled pairs which include

one of the nodes in an already labeled matching pair. Such an anchor node assumption

does not hold in ontology matching.

In my active learning framework for ontology matching, I propose to make use

of both the structural and semantic properties of the ontology graph as well as the

model confidence to quantify ambiguity for unlabeled concept pairs across ontologies.

Furthermore, I utilize this information to design an ontology-aware blocking technique

27

and a label propagation technique. I not only compare the proposed ontology-aware

selection against generic active learning strategies such as entropy-based and QBC, but

also against link prediction-based selection strategies based on degree sum, centrality

sum and their stratified implementations.

2.2.3 Next Query Prediction and Recommendation

Existing literature that is relevant to next query prediction and recommendation

can be classified into five broad categories - 1) User Intent prediction for Interactive

Data Exploration (IDE), 2) Query Recommendation and Autocompletion, 3) Latency

Reduction for Data Exploration, 4) using ML for related problems such as Cardinality

Estimation, Workload Arrival Rate Prediction and Workload Generation and 5)

Conversational Recommendation.

2.2.3.1 Intent Prediction for Interactive Data Exploration

User intent is formulated by IDE applications in terms of the data that the user is

interested in. Systems such as smart drill-down [65], Indiana[52] and SeeDB [148] define

statistical interestingness heuristics which require that diverse data matching the

user interest is retrieved. One notion of statistical interestingness is the surprisingness

factor that can be defined through the KL-divergence between the distributions of

the data retrieved by a user thus far and the next set of tuples that she would be

interested in retrieving. REACT [137] defines a set of data interestingness heuristics

such as diversity, dispersion, peculiarity and conciseness and also captures user session

context based on directed acyclic graphs of context trees [97] to detect user intent.

28

DynaCet [123] employs faceted search to identify the attributes to group by (known

as facets) and drill down upon, in order to quickly capture the user intent. A decision

tree is built by choosing the facets that interest the user as the splitting attributes,

which also help in ranking the tuples of eventual interest to the user. At any given

point in an exploration session, based on the facets chosen by the user thus far, the

facets that might interest the user are recommended out of the decision tree such

that the user is quickly led to her intended tuples at the leaf nodes. Active learning

based approaches [110, 112, 40, 41] represent the user intent as the last query in a

session. In one of my earlier works, Meduri, Chowdhury, and Sarwat [95], I use RNNs

to predict the dynamic user intent but the SQL fragment embeddings support simpler

next queries upon a single table without constants.

2.2.3.2 Query Recommendation and Autocompletion

While IDE applications aim to predict data that interests the users in minimal user-

database interactions, query prediction moves the abstraction one level up from data

to queries and thus enables broader applications such as speculative query processing,

query prefetching, adaptive indexing etc., not restricted to data exploration. Query

steering [25] models the transitions among the queries in a user session as a Markov

chain and represents the states by exploration operators such as narrow, drilldown, relate

and move which are equivalent operators to “selection predicate”, “aggregation using

group by”, “join” and “substituting the constant parameters in selection predicates

with different values” respectively. However, a simple Markov chain cannot incorporate

a reward function to encourage or penalize the transitions during the training and

prediction phase which is why I rely on Markov Decision Processes (MDPs) that

29

can also capture the goal-oriented exploration that an analytical workload may have.

There have also been attempts to map Natural Language (NL) keyword queries to the

underlying tuples that match the human intent [90, 91, 92, 93] but these techniques

cannot be directly applied to SQL query prediction. Query recommendation [27, 43],

on the other hand, represents queries as bags of SQL fragments and recommends

queries from the historical logs aligning the most with the ongoing interaction session

in terms of overlapping query fragments. The problem of sparsity is overcome by

using sparse matrix factorization techniques [42] to recommend queries even under the

absence of a significantly large user history. Therefore, I compare temporal predictors

against Collaborative Filtering-based baseline techniques in this work.

Another related line of work on autocompletion of queries aims at automatically

filling up the missing parts of a query as a user is typing it. Existing works such

as Deng et al. [37] and Chaudhuri and Kaushik [28] complete keyword queries by

building an initial trie-like index on the data and finding the closest active nodes from

the trie matching the partial keyword query, whose leaf node descendants form the

complete keyword queries. Khoussainova et al. [73] auto-complete SQL queries by

representing all possible queries as nodes in a directed acyclic graph (DAG) and ranking

the transitions among the nodes in a graph based on their conditional probabilities

computed from heuristics such as popularity of query fragment co-occurrence in prior

logs and foreign key dependencies. The most likely transition (DAG edge) with the

highest conditional probability is chosen in order to identify the complete query (child

DAG node) from a given partial query (current DAG node). Although I do not address

this problem in my thesis, using ML algorithms to solve it can be an interesting future

direction, given that existing works for autocompletion are based on heuristics.

30

2.2.3.3 Latency Reduction for Data Exploration

Initial works from the past such as LeFevre et al. [79] reduce the execution latency

for a SQL query by rewriting it in such a way that it reuses the materialized views

from earlier executions of historical queries. Recent works such as Liang, Elmore, and

Krishnan [82] propose the usage of reinforcement learning to decide upon whether or

not to materialize a query result into a view by estimating its long-term utility, given

the information about the set of materialized views from the past. Data canopy [159]

is an effort to save on statistical query exploration by saving the already computed

statistics, looking ahead and precomputing results for statistical queries likely to be

asked in the future. While “Approximate Query Processing (AQP)” systems such

as BlinkDB [3] work with samples and save on query processing time, more recent

efforts such as Verdict build query synopses [111] which help estimate the answers

to the future queries based on the answer sets retrieved for the queries asked thus

far in the exploration sessions. DICE(Kamat et al. [67] and Jayachandran et al.

[64]) is a related system that uses faceted exploration over a data cube to ensure

that speculative execution of queries that a user might be interested in, happens in

sub-second latencies. In an ongoing user session, each current (group by) query is

represented by its result facet and the possible successor facets within the data cube

are bounded by pre-defined roll-up, drill-down and pivot operations on the current

facet and are prioritized by accuracy heuristics proposed in Kamat et al. [67]. The

most likely successor queries are discovered during the user think time and their results

are cached for seamless exploration. In my work on query prediction, I too exploit the

user think time between successive queries to predict the SQL fragments in the next

query and also to execute the SQL query re-generated from the predicted fragments.

31

2.2.3.4 ML for Cardinality Estimation and Query Workload Generation

State-of-the-art ML predictors have been recently used to solve several problems

related to query workload prediction such as join cardinality estimation, workload

arrival rate prediction and synthetic workload generation. Kipf et al. [75] use RNNs for

an orthogonal purpose of estimating join cardinality in query workloads and therefore,

capture join and selection predicates from SQL queries in feature vectors. Efforts have

also been made to predict the arrival rate of representative query clusters (templates

that exclude constants from SQL queries) in a workload (Ma et al. [85]). RNNs

have most recently been used to recommend data preparation steps in terms of the

next operator to apply along with the corresponding schema element (column). Yan

and He [168] use RNNs to predict the next SQL operator based on the logs from

pre-crawled Jupyter data science notebooks. Subsequently, for the predicted SQL

operator, the schema element such as the columns or tables that co-occur with the

operator is predicted separately by using operator-specific heuristics. On similar

lines, El, Milo, and Somech [44] use deep reinforcement learning to generate a query

workload that can be presented in a data science notebook. My work on query

prediction differs from these existing works along the following lines. In contrast

to Kipf et al. [75] who featurize a subset of SQL operators and Yan and He [168] who

predict one SQL operator at a time, I propose the creation of more comprehensive

SQL embedding vectors on wide real world schemata containing multiple relations and

columns. I facilitate the prediction of an exhaustive list of SQL fragments comprising

a variety of SQL operators and constants of all data types from any data distribution

in contrast to Kipf et al. [75] who encode numerical constants in selection predicates

with an underlying uniform distribution assumption on the constant value space. More

32

importantly, Yan and He [168] and Kipf et al. [75] do not allow for complete synthesis of

novel SQL queries using RNNs. I accomplish this by employing discretized thresholds

and syntax correction heuristics upon the numerical output vectors predicted by RNNs.

Contrary to El, Milo, and Somech [44] who use deep reinforcement learning in an

unsupervised manner for workload generation and data interestingness metrics in lieu

of a reward function, I adapt exact Q-Learning in a supervised manner by learning the

<state,action> pairs using a reward function that captures the sequence of queries in

a workload.

2.2.3.5 Conversational Recommendation

Conversational recommendation systems have seen a lot of interest in the recent

past. These include systems [81, 31, 80] that typically employ <user-item> based

Collaborative Filtering (CF) approaches while incorporating the conversational context

between the system and the user to recommend items such as movies or restaurants

based on the ratings provided by users on the items. Li et al. [81] use a deep

learning model (hierarchical auto-encoder) to capture the conversational context

which is trained on a set of conversations centered around the theme of providing

movie recommendations. Christakopoulou, Radlinski, and Hofmann [31] focus on the

problem of cold start in conversational recommendation systems in cases where users

have no history of rating items. The new user’s profile is built by asking clarifying

questions generated using active learning coupled with multi-armed bandit models.

Those models balance the explore and exploit paradigms by minimizing the number

of questions asked while maximizing the information gain.

Conversational recommendation systems that utilize user feedback to fine tune

33

their prediction models include Lei et al. [80] and Mahmood and Ricci [86]. Lei

et al. [80] train a matrix factorization model on users and items, which is updated

based on the positive and negative feedback provided by users to provide refined

recommendations. Mahmood and Ricci [86] use Markov Decision Models for making

recommendations. The actions are adaptively updated based on user feedback using a

reinforcement learning model that chooses actions based on the type of user (novice

or experienced) and rewards based on whether a user browses the recommendations

or decides to add them to their travel plan.

In general, these systems do not directly address the problem of guided data analysis

for Business Intelligence (BI). However, some of the techniques introduced in these

systems, such as capturing the conversational context, address the cold start problem,

and updating the prediction models based on user feedback, are complementary to

my work of building systems that provide guidance for data analysis.

2.2.4 Cardinality Estimation

First, I discuss the existing literature on heuristic-based relational and spatial

cardinality estimation, followed by the existing work that utilizes machine learning or

deep learning (ML/DL) models for cardinality estimation. Finally, I contrast the work

on active learning for classification problems with that of regression. This is because I

apply both supervised and active learning for cardinality estimation by formulating it

as a regression problem.

34

2.2.4.1 Relational Cardinality Estimation

The problem of cardinality estimation has seen diverse formulations so far. In

the context of relational cardinality estimation, one can solve the problem either

based on the data alone, independent of the queries asked, or w.r.t. the queries asked

upon the data. Harmouch and Naumann [61] survey the application of sampling,

sketch-based algorithms comprising uniform and logarithmic hashing, bitmaps and

bloom filters to solve the query-independent variant of cardinality estimation which

counts the number of distinct values in a column within a table, given computational

and memory constraints. Query cardinality estimation refers to the problem of

estimating the number of qualifying tuples which appear in the result set of a query.

Sampling-based [56, 175] and sketch-based solutions which collect statistical summaries

of columns to create histograms [138, 71, 113] have also been applied to estimate

query result cardinalities. Sampling involves executing the queries on samples of data

and extrapolating the results to the entire table. Histograms are typically created

upon individual columns which are combined making the column independence

assumption at the time of answering a query. Poosala and Ioannidis [113] get rid of

the column independence assumption while answering the query by building multi-

dimensional histograms. To adjust outdated statistics collected by query optimizers

under frequent data inserts and updates, IBM DB2 [139] and Microsoft SQL Server [29]

use query feedback from pre-executed queries. I address the query-dependent variant

of cardinality estimation for spatial databases.

35

2.2.4.2 Geospatial Cardinality Estimation

Prior work on spatial cardinality estimation is relatively sparser than its relational

counterpart. However, the fundamental notions of getting rid of the uniform distribu-

tion and attribute independence assumptions were also addressed by the works on

spatial cardinality estimation. Belussi and Faloutsos [10] and Tao, Faloutsos, and Pa-

padias [143] propose a closed form solution to determine the cardinality for range and

spatial join queries. They affirm that geospatial data predominantly follows the power

law distribution and derive a correlation dimension based on fractal representation of

k-dimensional space, to capture the attribute interdependence.

Mamoulis and Papadias [88] also come up with analytical formulae which can

estimate the spatial selectivity for spatial joins. However, for all practical purposes,

sampling and histogram techniques are still used to derive statistical summaries for

spatial data. Das, Gehrke, and Riedewald [33] create k-dimensional spatial sketches

by representing the dimensions in the form of random variables in order to obtain

an unbiased estimate of the selectivity. These sketches broadly determine the spatial

intervals or the extent of the hyper-rectangles to compute a loose cardinality estimate

that is tightened eventually by filtering out the geometric objects which do not answer

the query.

An, Yang, and Sivasubramaniam [5] compare several sampling techniques such

as random, regular and sorted sampling besides proposing a geometric histogram

which uses minimum bounding rectangles (MBRs) to index space and to find the

intersections between pairs of spatial objects and thereby determine the selectivity

of spatial joins. However, the limitation of basic geometric histograms is the issue

of multiple counting of cardinalities corresponding to geometric objects which occur

36

at the edges of MBRs and might have been counted several times. This limitation is

overcome by Euler histograms [140] which quantize all spatial objects such that they

lie within spatial grids and never on the boundaries.

I compare spatially-aware stratified sampling (SpSS) with ML-based solutions for

cardinality estimation of spatial range and distance queries in this dissertation.

2.2.4.3 Machine Learning for Cardinality Estimation

The notion of using an ML model operating as a black box for cardinality estimation

has existed for a while in the relational database community. Malik, Burns, and Chawla

[87] learn a blackbox model based on query parameters using regression techniques

for relational cardinality estimation. Likewise, Ré and Suciu [120] learn a probability

distribution using the entropy maximization principle over a given set of query and

cardinality pairs. With the re-advent of AI and the renewed interest in neural networks,

there have been applications of deep learning to relational cardinality estimation. Kipf

et al. [75] learn a feed forward neural network to predict the cardinality of a multi-join

query and Negi et al. [102, 101] propose a loss function for supervised cardinality

estimation that helps the query optimizer select an optimal query plan. A few

works [151, 152, 157] utilized ML/DL models for spatial cardinality estimation but

they are confined to either a specific aggregation or join or streaming spatio-textual

queries respectively. Yang et al. [170, 171] learn the joint probability distribution of

distinct tuples in a table and estimate query selectivities in a completely unsupervised

manner. Such work cannot be applied to spatial distance queries because radius is

not originally encoded as an attribute in the database schema. In contrast to such

37

works [170, 151], I use active learning (AL) as a semi-supervised approach for spatial

cardinality estimation.

2.2.4.4 Active Learning for Classification vs. Regression

Prior works on active learning (AL) for classification can broadly be classified into

learner-agnostic [32, 7] or learner-aware [54, 146, 8], which have also been renowned to

be passive and aggressive active learning techniques respectively, in the ML community.

While learner-agnostic learning techniques typically compute the labeling disagreement

(entropy) among a committee of classifiers to select ambiguous feature vectors that

are apparently difficult to classify, learner-aware approaches use heuristics specific to

the classifiers to determine the labeling confidence, and thereby infer the ambiguous

feature vectors. Although there have been fewer works that use AL for regression

models, a similar categorization of model-dependent vs. data-dependent techniques

also exists in this area. Model-dependent techniques comprise query-by-committee

(QBC) [119, 19] and expected model change (EMCM)-based [21, 20] selection strategies.

Data-dependent selectors based on greedy heuristics [172, 165] measure the diversity

between the unlabeled and labeled data. Although hybrid selectors exist [164, 84],

they are sequential and can only select one example at a time and are inapplicable to

cardinality estimation on large corpora of queries where batched selection is preferred

over sequential selection. Therefore, I propose a batched selector named hybRID that

is both model-dependent and data-dependent where data refers to the query feature

vectors in the context of spatial cardinality estimation.

38

Chapter 3

A COMPREHENSIVE ACTIVE LEARNING BENCHMARK FRAMEWORK FOR

ENTITY MATCHING

In this chapter, I will discuss the solution to the research problem Q1 that I have

discussed in Section 2.1.1, which falls under the category of “Human-in-the-Loop Entity

Matching”. In Sections 2.1.1.1 and 2.2.1 in Chapter 2, I have established the need

for a unified active learning evaluation framework. This is an extensible benchmark

framework that I propose to evaluate several active learning methods consisting of

combinations of classifiers and example selectors. First, I give an overview to the

benchmark (Meduri et al. [96]) within which I discuss the evaluation metrics besides

the architecture of the benchmark, and then I discuss the various example selection

strategies that I implement in the benchmark. Finally, I present the evaluation results.

3.1 Benchmark Overview

(a) Our Unified Active Learning Benchmark Framework (b) 4D view of Unified Active Learn-
ing

Figure 6

39

Figure 6a presents the system architecture of my unified active learning benchmark

framework. In contrast to supervised learning which requires a significant amount of

upfront training data, active learning requires a limited amount of initial labeled data

(∼ 30 examples in my framework) from which the learner produces an initial model.

The example selector chooses ambiguous, unlabeled examples that the model finds

hard to predict the label for and queries an oracle (human or ground truth) for those

labels. The newly labeled data is added to the cumulative set of training data obtained

thus far upon which a refined model is learned. In each active learning iteration, the

learned model is evaluated by an evaluator w.r.t. a variety of metrics pertaining to

label prediction quality, informative example selection latency, model interpretability

and #labels which will be explained in detail. I have four basic components in my

framework - feature extractor, learner, example selector and evaluator. I use the

Object-Oriented paradigm of inheritance to model each component as a base class

and extend it into a child class to support specialized functionalities.

Feature Extractor: I apply a blocking function as a pre-processing step to

eliminate obvious non-matches among the Cartesian product of record pairs created

from the tables to be matched. I obtain the feature vectors by applying 21 similarity

functions from Java Simmetrics library [133] on all the matching schema attributes

across the two tables. If one or both of the pre-aligned attributes of a record pair

are null or missing, the similarity evaluates to 0. I use the same set of feature

vectors across all the classifiers in the framework barring rule-based models from Qian,

Popa, and Sen [114] which only support 3 (equality, Jaro-Winkler and Jaccard)

out of the 21 similarity functions. While linear, non-convex non-linear and tree-

based classifiers use floating point feature vectors (an example dimension can be

JaccardSim(left-table.attr,right-table.attr)), rule-based models evaluate each similarity

40

function on a discrete set of thresholds in (0,1] and create Boolean feature dimensions

(e.g., JaccardSim(left-table.attr,right-table.attr)≥ τ with τ from 0.1 to 1.0). The

dimensionality of the floating point feature vectors for linear, non-linear and tree-

based classifiers is 21 x |attrs| where |attrs| indicates the number of matching schema

attributes for the dataset. The Boolean feature vectors for rule-based classifiers have

the same dimensionality, (2 x 10 + 1) x |attrs|, as we have 10 discrete thresholds from

0.1 to 1.0 applied on Jaccard and Jaro-Winkler and equality predicates do not need a

threshold comparison.

Learner and Example Selector:

Figure 7: Class Hierarchy of Learners & Selectors

I support a learner from each of the following diverse categories - linear, non-

convex non-linear, tree-based and rule-based classifiers. Figure 7 shows how I derive a

sub-class for each classifier from the learner base class. Since the base class hosts the

common functionalities across all the learners, each sub-class only needs to contain

methods specific to a learner. On similar lines, I support a learner-agnostic example

selector and two learner-aware selection strategies. While the learner-agnostic selection

strategy of query-by-committee (QBC) can be applied to any classifier, random forests

inherently learn a committee of trees in a learner-aware manner.

Therefore, a relaxed variant of QBC is applied to such tree-based learners. In

contrast, learner-aware selection strategies can work only with specific learners. For

instance, margin-based selection is compatible with linear and non-convex non-linear

41

classifiers (and is extended accordingly in Figure 7) but not with random forests or rules.

Heuristic-based technique of LFP/LFN is devised only for the rule-based classifier

in Qian, Popa, and Sen [114] and does not have any child classes. My framework

records the compatibilities between specific example selectors and classifiers through

the class hierarchy shown in the figure.

Evaluator: I evaluate the active learning methods on quality, latency, #labels

and interpretability.

Quality : The quality of the model is determined by the usefulness of the examples

retrieved by the example selector. In each active learning iteration, once I obtain a

refined model, I test it on the entire set of data (both labeled and unlabeled pairs

obtained post-blocking). Matching pairs get a label of 1 and non-matching pairs are

assigned 0 as the label. Precision, recall and F1-score are computed based on the

number of matching pairs predicted accurately. Precision and recall can be defined as

follows:

Precision = TP/(TP + FP) , Recall = TP/(TP + FN)

where TP (true positives), FP (false positives) and FN (false negatives) denote the

number of matching pairs predicted accurately, non-matching pairs mislabeled as

matching and matching pairs mislabeled to be non-matching, respectively. F1-score is

the harmonic mean of precision and recall.

Latency : The time taken by an example selector to retrieve the ambiguous examples

in each iteration together with the training time of the model on the cumulative set

of labeled examples determine the overall user wait time. The example selection time

for QBC can be broken down into committee creation time, which is the time taken

to create a committee of classifiers and example scoring time which is the time taken

to compute the disagreement (entropy) metric for all the unlabeled examples and

42

pick the most ambiguous ones out of them. For learner-aware approaches such as

margin and LFP/LFN the latency only comprises the example scoring time as there

is no classifier committee to be created. For tree-based approaches, the committee of

random trees is created during the training phase. Hence, the example selection time

for random forests is the time required to compute the entropy among the committee

of trees.

#Labels : This is the minimum number of labeled examples required by each active

learning method to learn a model that converges to its best achievable quality. If

adding more labels no longer changes the quality of the model learned in terms of its

Test F1-scores, the model can be deemed to have reached its convergent state. The

lower the #labels, the more effective is the active learning strategy used. If all the

unlabeled examples are required to achieve the best possible classifier, it means that

the active learning policy used is ineffective and it is better to resort to supervised

learning instead, in such scenarios.

Interpretability : This is a metric that determines how readable and interpretable

the model is to the end user. Concise rules are preferred over mathematical models

by humans especially in scenarios where explainability takes precedence over model

quality or effectiveness. Interpretability is defined as being inversely proportional to

the number of atoms in a rule [134], where an atom is defined as a Boolean predicate

that consists of a similarity function applied over an attribute pair accompanied by a

threshold. Since random forests are ensembles of decision trees which consist of similar

logical predicates, I will compare tree-based approaches to the rule-based models [114]

w.r.t. interpretability.

43

3.2 Compared Approaches

In this section, I describe the various active learning methods, i.e., example selection

policies and how they are applied to each learner I implement in my benchmark. I

categorize the example selectors as being learner-agnostic or learner-aware. While

query-by-committee (QBC) is a learner-agnostic approach and can be applied to all

classifiers, margin and Likely False Positives/Negatives (LFP/LFN) are learner-aware

strategies and are specific to the classifier upon which they are applied.

3.2.1 Query-by-committee (QBC)

Mozafari et al. [99] propose query-by-committee (QBC) as a generic strategy that

can be applied to any learner. Variants of it have been proposed earlier in Sarawagi

and Bhamidipaty [126]. QBC formulates the ambiguous example space based on the

disagreement among a committee of classifiers regarding the labels of examples.

As illustrated in Figure 8, QBC draws B (=5 in the figure) bootstrap training

samples with replacement out of the aggregate labeled data from which a committee

of B classifiers is learned. Each classifier in the committee predicts the labels of

all the unlabeled examples and disagreement is computed based on the entropy

among the classifiers upon the assigned label to each example. In lieu of entropy,

I use variance defined by Mozafari et al. [99] over an an unlabeled example Exi

as V ariance(Exi) = Pi

C
(1− Pi

C
) where C is #classifiers in the committee and Pi is

#classifiers which assign a positive class label (matching pair in the context of EM)

to Exi.

Examples with the highest variance are passed for labeling after which they are

44

Figure 8: query-by-committee

included into the aggregate training set. When several examples have the same

measure of high disagreement, a random subset of those examples is selected. A

way to reduce randomness is to increase the # classifiers in the committee to get

fewer examples with the same variance. However there are two hindrances: 1) larger

bootstrap committees take longer to train, 2) not every classifier in the committee

can be unique as the samples are drawn from the same training set and may contain

overlapping examples. In general, larger committees are expected to select more

informative examples than smaller committees.

3.2.1.1 Tree-based Classifiers

As mentioned before, QBC is learner-agnostic and can be applied to all learners

such as linear, non-convex non-linear and rule-based classifiers. However, tree-based

classifiers such as random forests naturally learn an ensemble of trees in a learner-aware

manner during their training phase. Hence, the overhead of creating a committee of

45

classifiers from re-sampled labeled data is unnecessary. I directly use the decision

trees in a random forest as the classifier committee to compute the variance on the

set of unlabeled examples in each active learning iteration. I use the same settings as

the Corleone [53] system to implement the learner for random forests in our benchmark

framework. Each random forest contains random decision trees of unlimited depth

and uses a random subset of log2(Dim+1) features for node splitting from a total of

Dim features. Although Corleone uses 10 decision trees per forest, I allow #trees to

be parameterized.

3.2.2 Margin

Margin measures the confidence of a classifier based on how far its predicted labels

are from the decision boundary. Although the notion of margin has been originally

proposed for linear classifiers, non-convex variants of margin [103] have also been

proposed. I apply margin as an active learning strategy to both linear and non-convex

non-linear classifiers.

3.2.2.1 Linear Classifiers

In the ML literature, version space of linear learners can be defined as the candidate

set of classifiers that can separate the positive from the negative training examples in

the aggregate set of labeled data. Margin-based selection sorts unlabeled examples

based on their informativeness and selects those examples whose inclusion into the

labeled data leads to a drastic reduction of the version space in each active learning

iteration. This results in an earlier convergence to the ideal classifier than committee-

46

Figure 9: Margin-based selection for Linear Classifiers

based strategies. Margin-based selection for linear classifiers has been theoretically

proved to aggressively halve the version space in each active learning iteration in

the binary classification scenario [146] thus terming it as an aggressive strategy

while naming committee-based techniques like QBC as passive strategies in the ML

literature [54].

Margin for a binary linear classifier is defined as the distance of a feature vector

to the separating hyperplane and the strategy picks the unlabeled examples which

are closest to the hyperplane. Margin can be approximated by the magnitude of

the dot product of a feature vector X with the separating hyperplane unit weight

vector W added to normalized bias b as W.X + b. The sign of the dot product is

ignored because ambiguous examples are chosen from both the classes. It is less likely

although possible, that two distinct feature vectors fetch the same dot product, thus

making margin-based selection more deterministic than QBC. Figure 9 shows the

selection of two highlighted unlabeled examples closest to the separating hyperplane

in the two-class scenario.

47

3.2.2.2 Non-Convex Non-Linear Classifiers

I use a neural network with a single hidden layer as a non-convex non-linear classifier

implemented in our framework. During the forward pass of the training phase, I feed

the aggregate labeled data at the input layer of the neural network. Given N labeled

record pairs each with a feature vector of Dim dimensions and a label of 1 to indicate

matching or 0 for non-matching, they are passed to a hidden layer which converts

each of these Dim-dimensional vectors into h-dimensional vectors using an affine

combination of hidden-weights with the input features followed by a ReLU activation

function. h is the number of neurons in the hidden layer. The intermediate feature

vectors from the hidden layer are normalized using a batch-normalization layer [63]

before passing them to the output layer. At the output layer, the intermediate feature

vectors are converted from h dimensions into a single dimension using an affine layer.

Figure 10: Margin-based selection for Neural Networks

The affine output is termed as the margin (see margin definition for non-convex

classifiers [103]) which is passed to the sigmoid activation function that emits an

48

output probability. If the output probability > 0.5, the record pair is labeled to be

matching else, non-matching. I use L2-loss function and Stochastic Gradient Descent

(SGD) with momentum as the optimization function to update the weights during the

backpropagation phase. I use 50 epochs and a mini-batch size of 8 during training. For

SGD, I use a learning rate of 0.001, a decay constant of 0.99 and a momentum of 0.95.

I also use drop-out regularization by turning off half of the hidden nodes randomly

during training to prevent overfitting. I could see more stability in the neural network

predictions because of batch-normalization and drop-out regularization.

Once a trained neural network is obtained in each active learning iteration, I pass

the unlabeled examples to the input layer as shown in Figure 10. At the output layer

once I obtain the margin and the output probability, I pass the top-K examples with

the least margin to the oracle for labeling and include them in the labeled data. The

ambiguity of an example can be inferred directly from the output probability itself. If

it is close to 0.5, the classifier is most ambiguous about its label. This intuitive logic

can be used to cross-verify the theoretical margin definition from Nguyen and Sanner

[103]. Since margin obtained from the affine output layer is fed as an input to the

sigmoid function, the lower the margin, the closer to 0.5 its sigmoid evaluation would

be.

3.2.3 Likely False Positives / Negatives (LFP/LFN)

LFP/LFN is an example selection heuristic devised for rule-based learning [114]. Ac-

tive learning is used to learn entity matching rules expressed as monotone DNF formu-

las, that is, disjunctions of conjunctive rules constructed from individual atomic pred-

icates. An example of a conjunctive candidate rule matching user profiles across two

49

Figure 11: LFP/LFN heuristic for Rule-based Learners

distinct social media platforms P1 and P2 may be P1.firstName = P2.FName AND P1.lastName

= P2.LName AND P1.city = P2.city, based on equality of first and last names and cities. In or-

der to improve precision of the candidate rule, LFP/LFN picks matches predicted by the

rule on the unlabeled data that are likely to be non-matches (by using a feature similar-

ity heuristic), and passes these Likely False Positives (LFPs) to the oracle for labeling.

As a result of such labeling, in the next iteration, the system will learn a higher

precision rule. For example, a new, more selective predicate may be added to the

earlier conjunctive candidate rule: lastNameFrequencyFilter(P1.lastName,80), filtering out

the most frequently occurring last names (e.g., in the top 80 percentile). Similarly,

LFP/LFN also identifies pairs of records that are not predicted to be matching by an

existing rule but are likely to be matches. These are the Likely False Negatives (or

LFNs) which are again labeled by the oracle. The LFNs are obtained by executing

relaxed variants of the candidate rule R called Rule-Minus rules (see Figure 11); by

dropping predicates from R, these relaxed rules find missed positive examples, and

ultimately enhance recall. New conjunctive rules are thus learned from labeled LFPs

and LFNs leading to enhanced precision and recall.

50

3.3 Experimental Evaluation

3.3.1 Experimental Settings

I use a cluster with 24 Intel Xeon 2.4GHz CPUs each containing 6 CPU cores and

99 GB main memory, but a limited Java heap space of 4 GB. I use Weka [161] for the

implementation of SVM and random forests while we use Apache SystemML [142] for

neural networks. I will empirically answer the following questions in this section.

• Among the example selection strategies applicable to each classifier, which is

the best performing approach w.r.t. both EM prediction quality and latency?

• Can active learning methods achieve comparable quality metrics as supervised

learning? If so which is the best combination of learner and example selector?

• How many labels are required by each active learning method on a dataset to

reach a convergent F1-score?

• How does rule-based learning [114] compare to tree-based learners on quality

and interpretability?

Figure 12: Datasets for Active Learning Framework

In this dissertation, I will present the representative results on EM quality and

latency for perfect and noisy oracles on one of the publicly available datasets, Abt-

51

Buy [2].1 To reduce the size of candidate pairs to be matched, during the feature

extraction phase (see Section 3.1), I prune away the obvious non-matches using

Jaccard similarity function with a numerical threshold in an offline blocking step on

the tokenized attributes from each pair. I set the threshold to 0.1875 to roughly retain

the same number of post-blocking pairs as Mozafari et al. [99] and Wang et al. [154] on

Abt-Buy, which is a product dataset [2] that matches 1081 records from Abt against

1092 records from Buy resulting in 1.18 M record pairs of which 1097 are true matches

with a class skew of ∼0.09%. Blocking retains 8682 record pairs preserving all 1098

matches.

Train-Test Splits and Termination Criteria: I start active learning with a seed

of 30 labeled examples. In each active learning iteration, I query the oracle (which

happens to be the available ground truth on these datasets) for the labels of a batch

of 10 examples chosen from the unlabeled set, upon which the learned model is refined

and evaluated on the test set. I use the following settings for train-test splits.

• I evaluate active learning methods on the test set created from all the post-

blocking pairs, while progressively querying the oracle for a sample of them

to be added to the training set in each labeling iteration. While an earlier

crowd-sourcing work Vesdapunt, Bellare, and Dalvi [150] defines progressive

recall, I analogously define progressive F1 as the test F1-score obtained on

post-blocking pairs.

• For active vs. supervised learning experiments, I create the conventional train-

test splits (with the same class skew as post-blocking pairs) used in supervised

learning scenarios. 80% of the post-blocking pairs form an unlabeled set, out of

1For the complete set of results, I refer the reader to Meduri et al. [96].

52

which examples are selected in each learning iteration, while the remaining 20%

form a held-out test set upon which the learned models are evaluated. I use this

only for the experiments in Fig. 14.

The termination criteria differ between perfect and imperfect oracles. In the case

of perfect oracles, once an active learning method achieves a convergent F1-score,

there is little change to it with the addition of more examples. In contrast, in the case

of imperfect oracles emulating crowdsourcing behavior, the addition of more examples

leads to deteriorating F1-scores because of an added amount of noisy labels. Therefore,

I terminate active learning with perfect oracles in Figure 13 as soon as either one of

the approaches achieves a near-perfect (close to 1.0) F1-score or all the examples are

labeled. In the experiments on noisy oracles from Figure 14, the termination criterion

is the exhaustion of all unlabeled examples. Rule-based learners terminate as soon as

no likely false positives (LFPs) or likely false negatives (LFNs) are found among the

selected examples. This results in no new rules being discovered, that leads to early

termination.

3.3.2 Comparison of Classifiers in conjunction with Best Example Selectors

In Figures 13a and 13b, I compare the best performing example selectors from each

of the classifiers (margin for neural nets, margin with ensemble or blocking for linear

SVMs, learner aware QBC(20) for random forests and LFP/LFN for rule learners)

against each other w.r.t. progressive F1-score and user wait time (which is the sum of

train time and example selection time, see Section 3.1 for definition).

Having compared these best example selectors from each classifier, I observe from

Figure 13a that random forest with QBC(20) labeled as Trees(20) outperforms all

53

0 500 1000 1500 2000

#Labeled Examples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
e
s
t

F
-M

e
a
s
u
re

Comparison of Classifiers (Best Variants)
Abt-Buy

NN-Margin

Linear-Margin(Ensemble)

Trees(20)

Rules(LFP/LFN)

(a) Quality (Progressive F1)

0 500 1000 1500 2000
#Labeled Examples

100

101

102

T
ra

in
in

g
 +

 E
x
a
m

p
le

 S
e
le

c
ti

o
n
 T

im
e
 (

s
e
c
s
)

Comparison of Classifiers (Best Variants)
Abt-Buy (log-scale)

NN-Margin

Linear-Margin(Ensemble)

Trees(20)

Rules(LFP/LFN)

(b) User Wait Time

Figure 13: Comparison of Classifiers with Best Selection Strategies (User Wait Time)

other learners upon progressive F1-scores. I find that rules lead to the largest user wait

time, least progressive F1-scores and early termination. However, they perform much

better on interpretability (Refer to Section 3.3.5 for detailed results on interpretability)

and produce an ensemble of concise, high precision DNF rules that can be easily

understood and debugged by the end user. Neural networks incur the second largest

latency because of the long training they undergo, while random forests require the

user to wait for the shortest time despite training an ensemble of 20 trees. This

emphasizes the importance of learner-aware training rather than learner-agnostic

training used in QBC. SVMs with blocking and ensembles incur the least user wait

times in the beginning but with the arrival of more labels, the training time increases

thus increasing the wait time between iterations.

3.3.3 Comparison with Supervised Learning

I conduct these experiments following the conventional train-test splits of supervised

learning where example selection is done out of a training set containing 80% of post-

54

0 1500 3000 4500 6000 7500

#Labeled Examples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
e
s
t

F
-M

e
a
s
u
re

Active vs. Supervised Trees(20)
1736 Test Labels, 0% Noise

ActiveTrees(QBC-20)

SupervisedTrees(Random-20)

(a) 0% Noisy oracle

0 1500 3000 4500 6000 7500

#Labeled Examples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
e
s
t

F
-M

e
a
s
u
re

Active vs. Supervised Trees(20)
1736 Test Labels, 10% Noise

ActiveTrees(QBC-20)

SupervisedTrees(Random-20)

(b) 10% Noisy oracle

0 1500 3000 4500 6000 7500

#Labeled Examples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
e
s
t

F
-M

e
a
s
u
re

Active vs. Supervised Trees(20)
1736 Test Labels, 20% Noise

ActiveTrees(QBC-20)

SupervisedTrees(Random-20)

(c) 20% Noisy oracle

Figure 14: Active vs. Supervised Trees (Abt-Buy, 20 % Test Labels)

blocking examples and the evaluation is on a held-out test set of 20% of the tuple

pairs which never participate in example selection. In Figure 14, I compare active

learning against supervised learning on Abt-Buy using ensembles of 20 trees upon

various imperfection levels of an oracle. In each iteration, while active learning uses

learner-aware QBC to label examples that lead to highest labeling disagreement

(entropy) among the 20 decision trees, supervised learning picks random examples in

each iteration. The results show that the former outperforms the latter within the

first few iterations while achieving test F1-scores comparable to those that supervised

learning achieves after training on the entire set of 80% training examples. This

difference between supervised and active learning is insignificant at 20% noisy oracle

(see Fig 14c). In order to eliminate randomness, I present the average F1-scores over

five random runs using different random seeds for the probabilistically noisy oracle to

ensure experimental reproducibility.

55

3.3.4 #Labels for Convergence

Figure 15 presents the best progressive F1-scores from the active learning ap-

proaches implemented in my benchmark. For my benchmark results, I also present

within parentheses, the minimum # labels required by the approaches from a perfect

oracle, to converge to the corresponding F1-scores. Learner-aware committees (size

20) of tree-based learners achieve the best results close to 1.0 on all the datasets but

also consume the largest # labels.

Figure 15: Best Progressive F1-Scores from our Benchmark using Perfect oracles vs.
State-of-the-art Approaches

However, we can also notice from Fig. 13b that these approaches achieve them with

least user wait time. Among the active learning methods for linear classifiers, margin-

based optimizations of blocking and active ensemble achieve comparable progressive

F1 as QBC while requiring fewer labels and lesser user wait time on almost all the

datasets. Although QBC(2) of non-convex non-linear classifiers consumes fewer labels

than its margin counterpart on 3 out of 5 datasets and achieves similar F1 scores,

training committees of neural nets incurs huge training times. Rule learning using

LFP/LFN terminates as soon as no LFPs or LFNs are found on the learned ensemble

56

of high precision rules. This keeps its #labels low and because of the limited number

of similarity functions supported by the heuristic, it achieves low progressive F1-scores.

3.3.5 Interpretability: Rules vs. Trees

While model interpretability has been established to be crucial for supervised

learning-based EM by earlier works such as Singh et al. [134], it is also important

for active learning. In the case of supervised learning, interpretable models are used

for explainability purposes in order to understand why a particular model produces

higher quality of matches than a different model and also for debugging purposes to

reduce false positives and false negatives, and thereby enhance precision and recall.

While all these benefits also exist for active learning, a direct usage of interpretable

models is to decide whether or not to accept a model into the active ensemble in a

learning iteration and when to terminate active learning under the absence of ground

truth.

In this section, I contrast the #atoms in rule DNFs learned by LFP/LFN with

those of the DNF formulae obtained using random forests. I convert the trees learned

by random forests into DNF formulae by traversing the path from the root of the tree

until all the leaf nodes whose predicted label is 1 or matching. The path turns into a

conjunction of rule-based predicates, and the disjunction or union of all such formulae

leads to a DNF. I do not further optimize the DNFs into concise Boolean formulae

unlike Singh et al. [134] as the latter may seem concise but need to be mentally

unrolled into DNFs by a human. This is because, DNFs are more intuitive to a human.

It is therefore possible that there are overlapping atoms across different conjunctive

predicates in a DNF and they are counted with repetition to compute #atoms for both

57

0 500 1000 1500 2000

#Labeled Examples

101

102

103

104

#
 D

N
F
 A

to
m

s
 (

lo
g
-s

c
a
le

)

#DNF Atoms vs. #Labels
Abt-Buy

Trees(2)

Trees(10)

Trees(20)

Rules(LFP/LFN)

(a) #Atoms (Trees vs. Rules)

0 500 1000 1500 2000
#Labeled Examples

5

10

15

20

25

30

35

D
e
p
th

Depth of Tree-based Classifiers
Abt-Buy

Trees(2)

Trees(10)

Trees(20)

(b) Tree Ensemble Depth

Figure 16: Interpretability Experiments

rules and random forests. As mentioned in Section 3.1, an atom can be defined [134]

as a DNF predicate or a similarity function evaluated on a pair of attributes from two

records and compared against a numerical threshold. We can observe from Figs. 16a

& 16b that # DNF atoms in the learned trees as well as their depths increase with

more active learning iterations, since larger tree ensembles contain more atoms than

58

the smaller ones. The depth of a tree ensemble is the maximum among the depths

of all the trees in the random forest. We can notice from Fig. 16a that rules have

significantly fewer atoms than random forests on all the datasets and are thus easily

interpretable by a human.

Following is the ensemble of rules learned by LFP/LFN active learning heuristic

for the Abt-Buy dataset. Each of these rules has a test precision ≥ 0.88 and is

accepted into the ensemble at a distinct iteration. Similar concise DNF rule ensembles

were obtained on other datasets as well. I do not present the DNF rules for trees as

they are prohibitively large.

Abt-Buy (# DNF Atoms = 5):

Rule 1: Abt.price = Buy.price

∧ JaccardSim(Abt.name, Buy.name) ≥ 0.4

∨

Rule 2: JaccardSim(Abt.name, Buy.name) ≥ 0.7

∨

Rule 3: JaccardSim(Abt.name, Buy.name) ≥ 0.6

∧ JaccardSim(Abt.description, Buy.description) ≥ 0.1

59

Chapter 4

ALFA: ACTIVE LEARNING FOR SEMANTIC SCHEMA ALIGNMENT

In this chapter, I will present the solution to the research problem Q2 that I have

discussed in Section 2.1.1 pertaining to “Human-in-the-Loop Ontology Matching”. In

Sections 2.1.1.1 and 2.2.2 in Chapter 2, I have established the need for a hybrid active

learning framework that is not only model-aware, but can also, more importantly,

exploit the underlying structural and semantic properties of the ontology. First, I

will discuss the differences between entity matching and ontology matching. Next I

will explain an existing architecture of the deep learning model, called OntoGNN [60],

that was used as a supervised learning model for ontology matching. Subsequently, I

will explain the architecture for my proposed active learning framework, Alfa, that

uses ontoGNN as the matching classifier, and I will finally report the experimental

results on three real-world ontologies.

4.1 Ontology Matching vs. Entity Matching

In Figure 1 from Chapter 1, I introduced the problems of schema matching and

entity matching and how they fit into the big picture of data integration. Figure 17

shows ontologies OntoV 1 and OntoV 2 for the schemas of product vendors V1 and V2

which were earlier depicted in Figure 1. The task of ontology matching is to detect

that Product in OntoV 1 should be mapped to Type and Description from OntoV 2,

Brand name should be mapped to Company, and Price should be mapped to Cost.

The task of entity matching is to take the pre-aligned columns from ontology (schema)

60

Figure 17: Ontology Pair in an Example Data Integration Scenario

matching and to match the actual record content of the tuples in Figure 17 such as

HP to Hewlett Packard, $649 to $699 etc., and detect whether the tuple pair maps

to the same product instance or not. Following are the differences between ontology

matching and entity matching.

1. Entity matching (EM) refers to the problem of matching the database instances,

whereas ontology matching refers to matching the database columns in the

schema pair, where each schema is represented as an ontology graph.

2. The output of ontology matching is a set of pre-aligned attributes from the

schema pair which is fed as an input to entity matching. Hence, ontology

matching serves as a pre-requisite to entity matching.

3. Entities are database tuples which are perceived as string vectors by string-

based record matching techniques. Ontologies, on the other hand, are semantic

graphs used to represent database schema in which nodes represent the columns

61

(attributes) in the underlying schema, also called as ontology concepts, and

edges represent semantic relationships between the columns.

4. String-based record matching techniques, when applied to ontology matching

cannot capture the rich semantic information available in the ontology graphs

in the form of node labels, edge labels, their descriptions and the functional,

non-functional and hierarchical relationships encoded within the edges.

5. Existing literature on supervised ontology matching such as Hao et al. [60] uses

graph neural networks which can take an ontology pair as a unified graph input

and derive a compact representation for a pair of nodes to be matched within the

graph as an embedding. The embedding not only captures the textual description

of the nodes to be matched but also their local neighborhood traversed through

the edges connected to the nodes i.e., the semantic relationships within that

neighborhood. Such embeddings are not required for entity matching unless

additional graph-based semantic information is also available at a tuple-level.

4.2 Graph Neural Network for Ontology Matching

Figure 18a shows a sample ontology matching scenario between the database

schemata of two publication domains, CMT and Conf . As I can see in the figure,

there are two broad types of relationships (edges) between the concepts - 1) hierarchical

and 2) non-hierarchical. Hierarchical edges denote the inheritance property through

the is A edges, whereas non-hierarchical edges represent functional or non-functional

semantic relationships which may be one-to-one, one-to-many or many-to-many. The

task of ontology matching is to find matching ontology concepts, which is to identify

62

that Person nodes match between CMT and Conf, whereasAuthor from CMTmatches

to Participant from Conf and CMT.Document matches with Conf.Contribution.

(a) A sample pair of publication domain on-
tologies to be matched

(b) Relational Graph Convolutional Neural
Network for Ontology Matching (OntoGNN)

Figure 18

Figure 18b shows the architecture of OntoGNN which is a deep learning model

based on Relational Graph Convolutional Neural Networks (RGCN) applied to ontology

matching [60]. OntoGNN takes a unified ontology graph combining the individual

ontology graphs to be matched, a set of initial embeddings for its ontology concepts

and a training set of labeled matching and non-matching ontology concept pairs

as input. The initial embeddings for the ontology concept nodes are generated by

applying the Universal Sentence Encoder (USE) on the name and textual description

associated with the nodes. RGCN consumes these embeddings (512-dimensional in my

implementation) and generates compact (64-dimensional) embeddings, which augment

the linguistic nuances already available in the USE embeddings with ontology-aware

information such as the node neighborhood within the graph. I use two layers of

RGCN to capture the neighborhood information up to two hops for each concept

63

node. RGCNs also take the edge types into account to generate semantically enriched

embeddings. The multi-layer perceptron layer learns how to match the pairs of RGCN

model-generated embeddings by consuming the training pairs of nodes. The output

sigmoid layer will emit a matching probability which will determine the label of a

pair (matching if probability > 0.5 and non-matching otherwise). During the training

phase, the losses are backpropagated to learn both the embeddings as well as the

classification labels. During the prediction phase, the model generates the embeddings

and the matching or non-matching labels for the test pairs.

As I have mentioned in Section 2.2.2 in Chapter 2, supervised learning using

OntoGNN requires a lot of labeled pairs as deep learning models are label-hungry

and I need an active learning framework for ontology mapping to reduce #labels.

Existing generic Active Learning (AL)-based example selection strategies discussed

are ontology-unaware and other existing AL strategies for link prediction which are

ontology-aware make anchor node assumptions and rely on structural properties such

as degree and centrality which do not capture semantic properties of the ontology (see

Section 2.2.2.4 for details).

4.3 System Architecture of Alfa

I build an active learning framework titled Alfa which exploits both the structure

and semantics of the underlying ontology to perform blocking, ambiguous concept pair

selection and label-propagation. The example selection and label propagation steps

also exploit the model confidence along with the ontology properties. Figure 19 shows

the architecture of Alfa, in which the highlighted blocks in yellow display blocking,

example selector and label propagator as being onto-aware.

64

Figure 19: System Architecture of Alfa

Alfa consumes the ontology pair and generates a Cartesian product of all possible

concept pairs as the pool of unlabeled examples. Since this pool can be extremely huge

for large ontologies, blocking is typically applied during active learning to prune away

the obvious non-matches. I have explained how Jaccard similarity with a conservatively

low numerical threshold can be used as a blocking function for Entity Matching in

Section 3.3.1 in Chapter 3. That is an apparently simple blocking function which

computes the Jaccard similarity between a pair of tuples and prunes the pair from

the unlabeled pool of examples if its similarity is lesser than the blocking threshold.

However, string similarity is too simplistic and ontology-agnostic to be working well

in the context of ontology matching. Therefore, I exploit the structural and semantic

properties of the ontology in my onto-aware blocking, which I also call as semantic

blocking.

Out of the candidate set of unlabeled concept pairs, also called as post-blocking

pairs, generated by onto-aware blocking, a seed set of concept pairs are labeled by the

oracle (with the assistance of automatic labeling heuristics if necessary). The seed set

is relatively small (0.1% - 0.3% of the post-blocking pairs) and is fed to a learner to

learn an initial model of the RGCN. The model is incrementally refined in each active

65

learning iteration by querying the labels for a batched set of unlabeled concept pairs

from the oracle. To avoid overwhelming the oracle with too many queries, I design a

label propagator which can identify concept pairs that are similar to the batch of pairs

labeled by the oracle and infer the labels for such similar pairs. The inferred labels

along with the oracle-provided labels are supplied to the learner as additional training

data in each active learning iteration. By ensuring that both the example selector and

label propagator are ontology-aware, I make an effective use of the labeling budget

and achieve a model of competent quality in fewer active learning iterations.

Algorithm 1 Active Learning for Ontology Mapping (Alfa)
Require: Pseed seed pairs, budget optional labeling budget, batchSize # pairs to

label in each iteration, < OntL, OntR > left and right ontology graphs, nclust
clusters, blockingclust # clusters for blocking, embedMode to select between
ontology-based or model-generated embeddings for clustering, labelPropMode to
select between aggressive, conservative or adaptive label propagation

1: INIT PpostBlock ← ontoAwareBlocking(OntL, OntR, blockingclust)
2: Ptest ← PpostBlock
3: Pheldout ← PpostBlock − Pseed
4: INIT Ptrain ← Pseed, iter ← 1
5: while |Ptrain| ≤ budget ∧ |Pheldout| > 0 do
6: model ← train(Ptrain)
7: Clusters, Psel ← ontoAwareSelection(OntL, OntR, Pheldout, batchSize,

model, nclust)
8: Psel ← Psel ∪ ontoAwareLabelPropagation(Pheldout, Psel, Clusters,

labelPropMode, iter)
9: Pheldout ← Pheldout − Psel

10: Ptrain ← Ptrain ∪ Psel
11: Fscore ← evaluate(model, Ptest), iter + +
12: end while

Algorithm 1 presents an overview of how ontology mapping is done using Alfa.

While lines 1, 7 and 8 show the invocation to my proposed onto-aware blocking,

example selection and label propagation respectively, lines 2 and 3 show how test

examples and unlabeled held-out examples are created out of the post-blocking pairs.

66

The active learning framework is evaluated w.r.t. progressive F1 scores which are

described in Chapter 3 where the entire set of post-blocking pairs is treated as a test

set. This helps get a progressive quality measure for the model learned incrementally

in each active learning iteration and also lets us know how many #labels are required

before the classifier reaches a convergent F1-score which can be set to a target value

of 1.0 (perfect F1). Subsequently, I will describe how onto-aware example selector and

label propagator are designed, followed by onto-aware blocking.

4.3.1 Onto-aware Example Selector

(a) Clustering the publication domain (b) Likely False Positives or Negatives

Figure 20: Ontology Clustering and LFPs/LFNs in Alfa

My onto-aware example selector clusters the concept nodes in the unified ontology

graph (obtained by aggregating the ontologies to be matched) by applying the K-

means clustering algorithm in each active learning iteration. Next, it measures the

disagreement between the clustering achieved and the model prediction probabilities

for the ontology concepts. For example, let us consider the two clusters obtained in

Figure 20a where Cluster 1 contains all the nodes representing the ontology concepts

depicting people playing various roles of an author, participant, reviewer, PC member

67

Figure 21: Ontology-aware example selection.

etc., in the publication ontology. Cluster 2, on the other hand, consists of all the

ontology concepts depicting documents such as papers and posters. It is natural to

assume that with a sufficient number of clusters, I can achieve an accurate level of

granularity where all the concept nodes falling within the same cluster represent the

same concept and hence can be treated as a match. However, the OntoGNN model

may not agree with the clustering. It may predict the labels of some matching node

pairs w.r.t. the clusters as non-matching which are “Likely False Negatives (LFNs)”

and a few other non-matching node pairs w.r.t. the clustering as matching which are

“Likely False Positives (LFPs)”. It should be noted here that I cannot be sure whether

clustering is accurate or the model is accurate in each AL iteration. Either of them

may be wrong but the interesting nuance here is the disagreement between them

which is quantifying the ambiguity for us. The chosen LFPs and LFNs are supplied

to an oracle for labeling.

68

Algorithm 2 ontoAwareSelection(OntL, OntR, Pheldout, batchSize, model, nclust)
1: INIT Psel = {}, Ont← OntL ∪OntR
2: Clusters ← K-Means(Ont, nclust, model, True)
3: if nodes in a given pair belong to the same cluster then
4: metric← (1−modelPredictionProbability)
5: else
6: metric← modelPredictionProbability
7: end if
8: sortedPairs← Sort Pheldout DESC on metric
9: Psel ← choose batchSize pairs w. the highest metric from sortedPairs

10: return Clusters, Psel

Algorithm 3 K-Means(Ont, nclust, model, useModelEmbeddings)
1: if useModelEmbeddings == False then
2: metric← EuclideanDistance(sentenceEmbeddings)
3: else
4: metric← EuclideanDistance(modelEmbeddings)
5: end if
6: clusters← Initialize nclust clusters with random concepts from Ont as centroids
7: while cluster assignments keep changing do
8: centroids←re-compute centroids based on cluster means
9: clusters← re-assign clusters based on closeness to centroids using metric
10: end while
11: return clusters

Algorithm 2 and Figure 21 show the details of the onto-aware selection of example

concept pairs to be labeled in each AL iteration. Lines 3 to 7 show that I can use the

model prediction probability as the disagreement metric. If the nodes in a given pair

belong to the same cluster, as per the clustering, the label of the pair is matching.

In this case, the model prediction probability should be low (1.0 - probability should

be high) for the model to disagree with the clustering. This is because, if the model

output probability is high, then the label of the pair will be matching, but if it is low,

the label of the pair will be non-matching and this will be in disagreement with what

the clustering says about the label of the pair. Symmetrically, if the nodes belong to

69

different clusters, the model prediction probability should be high for the model to

disagree with the clustering. Eventually, in lines 8 to 10, I sort all the unlabeled pairs

based on the disagreement metric in descending order and choose the topmost pairs

with the highest disagreement for labeling.

Algorithm 3 shows how K-means clustering is applied to cluster the underlying on-

tology nodes. The only difference from a conventional K-means clustering is from lines

1 to 5 where I compute the Euclidean distance between concept nodes in the ontology.

I can either use model-generated embeddings or Universal Sentence Encodings (USE)

to represent the nodes. While onto-aware example selection uses model-generated

embeddings as they are superior in performance to the USE embeddings, in onto-aware

blocking which is a pre-processing step, I need to apply USE embeddings as a model

is not learned prior to the blocking step and the model-generated embeddings are

therefore unavailable for blocking.

4.3.2 Onto-aware Label Propagator

(a) Label Propagation for Matching Pairs (b) Label Propagation for Non-Matching Pairs

Figure 22: Onto-aware Label Propagation in Alfa

Figure 22 shows how I propagate the label LP that has been assigned by an oracle

70

to a specific pair P , be it matching (+) or non-matching (-) labels to several other

unlabeled examples (concept pairs). I do so by selecting the unlabeled pairs U which

are most similar to P that can borrow the label LP . I treat the matching (+) and

non-matching (-) labels as separate cases. For each matching pair, Pairref whose label

was supplied by the oracle, I first compute the cosine similarity, Simref of the node

embeddings within that pair (line 5 in Algorithm 4). Next, I generate the candidate

pool of unlabeled pairs. For this step described in Algorithm 5, I first examine the

cluster belongingness of the left and right nodes within Pairref and generate the

Cartesian Product of all possible pairs of nodes across the left and right node clusters,

excluding Pairref , where the left and right nodes belong to different ontologies.

All the unlabeled pairs within this candidate pool whose node embedding cosine

similarity exceeds Simref are assigned matching label if Pairref is a matching pair.

Else, if Pairref is non-matching, the mis-matching label is propagated to all the

candidate pairs whose node embedding cosine similarity is below Simref . This can be

observed in lines 10 and 11 of Algorithm 4 and in Figure 22.

An important thing to note here is that I cannot simply propagate labels to all

possible unlabeled pairs because, it can turn out to be sub-optimal propagating the

labels to candidate pairs which are not all that similar to the reference pair Pairref .

Therefore, I allow for three modes of label propagation in Alfa. The first is aggressive

which means that there is no restriction on the #pairs to which the reference label is

propagated. The second one is conservative where I propagate the label to the top-1

candidate pair which is the most similar to Pairref . The third is an adaptive mode in

which the label propagation is done to top-K pairs where K = value of the current

active learning iteration. This is done because, initially the RGCN classifier may not

be mature and hence propagating labels aggressively may cause incorrect labels to be

71

Algorithm 4 ontoAwareLabelPropagation(Pheldout, Psel, Clusters, labelPropMode,
iter)
1: INIT Pinferred = {}
2: assert labelPropMode == “aggressive” or “conservative” or “adaptive”
3: for i: 0 to |Psel|−1 do
4: Pairref ← Psel[i]
5: Simref ← COSINE_SIM(Pairref .left.embed, Pairref .right.embed)
6: crossClusterPairs ← genCrossClusterPairs(Pairref .left.cluster,

Pairref .right.cluster, Pairref)
7: for j: 0 to |crossClusterPairs|−1 do
8: Paircand ← crossClusterPairs[j]
9: Simcand ← COSINE_SIM(Paircand.left.embed, Paircand.right.embed)

10: if (Pairref .label == “matching” && Simcand > Simref) or (Pairref .label
== “nonMatching” && Simcand < Simref) then

11: Paircand.label = Pairref .label
12: Pinferred ← Pinferred ∪ Paircand
13: end if
14: end for
15: end for
16: if labelPropMode == “aggressive” then
17: return Pinferred
18: else if labelPropMode == “conservative” then
19: return the top-1 pair among Pinferred most similar to Pairref
20: else if labelPropMode == “adaptive” then
21: return top-k pairs among Pinferred most similar to Pairref where k =

iter
22: end if

Algorithm 5 genCrossClusterPairs(leftCluster, rightCluster, Pairref)

1: INIT crossClusterPairs = {}
2: for i: 0 to |leftCluster.nodes|-1 do
3: for j: 0 to |rightCluster.nodes|-1 do
4: Paircand ← (|leftCluster.nodes[i], rightCluster.nodes[j])
5: if Paircand 6= Pairref && Paircand.left.onto 6= Paircand.right.onto then
6: crossClusterPairs← crossClusterPairs ∪ Paircand
7: end if
8: end for
9: end for

72

propagated. But, as the model is refined with more AL iterations, I can propagate

the labels to more pairs as I grow more confident about the quality of the model with

more iterations.

The expected behavior here is that, conservative mode may lead to the best quality

model but may achieve less savings in labeling cost. Aggressive marks the other

extreme where I may end up with a relatively low quality model but I can manage

to exhaust all the unlabeled pairs without having to go to the oracle for several

labels, thereby achieving the highest feasible label cost savings among the three modes.

Adaptive mode strikes a middle-ground where a reasonable model is expected to be

learned with moderate labeling cost.

4.3.3 Onto-aware Blocking

As I have described earlier at the beginning of Section 4.3, the purpose of semantic

blocking is to prune away the ontology concept pairs which are obvious non-matches

from the pool of unlabeled pairs derived by applying Cartesian Product on the ontology

graphs to be matched. I have also mentioned that conventional Jaccard similarity-

based blocking techniques are ontology-unaware and purely rely on string similarity to

achieve this pruning. Semantic blocking, on the other hand, is aware of the ontology

and uses the semantic representation that is created using pre-trained language models

like USE [23] or BERT [38] to transform the schema element properties such as names

and descriptions into fixed size low-dimensional vectors. This ontology-aware blocking

technique also reasons about the clustering similarly to example selection. The schema

elements in the two input schemas are clustered based on the Euclidean distance

between these embeddings.

73

Figure 23: Onto-aware Semantic Blocking in Alfa

Algorithm 6 ontoAwareBlocking(OntL, OntR, blockingclust)
1: INIT Pcartesian ← OntL ×OntR
2: INIT Pheldout = {}, Ont← OntL ∪OntR
3: Clusters ← K-Means(Ont, blockingclust, model, False)
4: for i: 0 to |Pcartesian|-1 do
5: Paircand ← Pcartesian[i]
6: if nodes in Paircand belong to the same cluster then
7: Pheldout ← Pheldout ∪ Paircand
8: end if
9: end for

10: return Pheldout

As mentioned before, the clustering for blocking is directly applied upon the USE

embeddings of the nodes as the model is not trained prior to blocking which is more of

a pre-processing step. I adjust the number of clusters as a tunable parameter until a

pre-specified target number of post-blocking pairs is achieved. Blocking prunes away all

the ontology concept pairs whose nodes lie in different clusters. I empirically compare

my ontology-aware semantic blocking technique against the Jaccard similarity-based

baseline.

74

4.4 Baseline Example Selectors

4.4.1 Entropy-based Selection

For each unlabeled concept pair, I compute the Shannon entropy,
∑

i∈L−pi.log2(pi),

where L={0,1} indicates the class labels, 1 for matching and 0 for non-matching, and

pi indicates the probability with which the pair is a match. Those pairs1 which have

the highest entropy are selected in each active learning (AL) iteration. Interestingly,

the pairs whose probabilities are highly ambiguous (close to 0.5), yield the highest

entropy of 1.0. Therefore, for probabilistic classifiers, entropy-based selection can be

seen as an analogous variant of margin-based selection which selects examples that

have the least distance from the class-separator probability 0.5.

4.4.2 Query-by-Committee

Algorithm 7 shows how QBC [99] is implemented. In each AL iteration, I create a

committee of classifiers trained on several sampled sets of training data drawn with

replacement (lines 2 and 3). The size of each training sample set is equal to the

size of the training set of sampled pairs accumulated until the current AL iteration.

Subsequently, I compute the labeling variance among the classifier committee for each

unlabeled pair (lines 5 to 10) in Premaining and find the top-k remaining pairs with

the highest variance (line 12). The committee variance for each unlabeled pair is

computed based on the fraction of classifiers that label the pair as ‘matching’ and

1We use examples, pairs and samples interchangeably in this chapter.

75

Algorithm 7 QBC(Ptrain, Premaining, batchSize, committeeSize)

1: init Psel = {}
2: Samples ← sampleWithReplacement(Ptrain,committeeSize)
3: committee ← trainClassifiers(Samples)
4: scores ← []
5: for j: 0 to |Premaining| − 1 do
6: posModels ← findClassifiers(Premaining[j], committee, ‘matching′)
7: negModels ← findClassifiers(Premaining[j], committee, ‘non-matching′)
8: variance← |posModels|×|negModels|

committeeSize

9: scores[j]← variance
10: end for
11: sortedPairs← Sort Premaining DESC on scores
12: Psel ← choose batchSize pairs with the highest score from sortedPairs
13: return Psel

‘non-matching’ (lines 6 to 8). It is essential to note that I train the committee in

parallel to save on example selection time to give a fair advantage to the QBC baseline.

4.4.3 OASIS

Algorithm 8 shows the working of OASIS [89] which is an adaptive importance

weighted sampling (AIS) technique that was originally developed as an F1-score esti-

mator for Entity Matching (EM). I adapt it to GNN-based semantic schema matching

for ontologies by including a few implementation-level changes, without altering the

fundamental sample selection mechanism described in the original paper [89].

Algorithm 8 OASIS(Premaining, batchSize, model, ncluster)

1: init Psel = {}
2: Probsrem ← model.PredProb(Premaining)
3: strata ← equiWidthBinning(Premaining, Probsrem, ncluster)
4: weights ← computeImportanceWeights(strata)
5: sortedStrata← Sort strata DESC on weights
6: Psel ← choose batchSize pairs at random from sortedStrata
7: return Psel

76

• OASIS replaces the discriminative model (classifier) with a generative model. I

instead use GNNs as the discriminative model for a consistent implementation of

all baselines.

• OASIS creates a stratum (or a grouping) by using equi-width binning on the record

similarities between a pair of entities computed using string similarity functions [133].

Since I work on schema graphs, I use the predicted matching probabilities for concept

pairs as the similarity scores upon which I employ equi-width binning to create the

strata (line 2 in Algorithm 8).

• OASIS creates the strata only once and uses them through all the AL iterations

to select one sample in each AL iteration. I extend OASIS to perform batched

sampling and while doing so, I encountered several empty strata in the latter AL

iterations, that led to highly sub-optimal matching quality. Therefore, I refine the

strata in each AL iteration by discarding the unlabeled pairs that have been labeled

by the oracle. This was done to give more advantage to my implementation of the

OASIS baseline.

In my implementation, OASIS creates the strata on the remaining unlabeled pairs

in each AL iteration (line 3 in Algorithm 8). It then computes the importance

weights for each stratum (line 4) according to Equation 12 in the original OASIS

paper [89], which balances an exploration vs. exploitation trade-off. It assigns

more weight to the largest representative stratum that contains the most number of

unlabeled pairs (exploitation) with ε probability vs. using an asymptotic formula for

stratum importance computation (exploitation) with (1-ε) probability. I used the

default settings from the original paper for the parameters used in importance weight

computation such as the estimated F-measure weight (α=0.5) and ε=0.001. After the

computation of importance weights, I sort the strata and pick the top-k unlabeled

77

pairs for sampling at random from the topmost strata with the highest importance

weights, where k=batchSize.

4.5 Experimental Evaluation

In this section, I evaluate the performance of Alfa with the goal of answering the

following questions.

• How effective is my proposed ontology-aware sample selection technique in Alfa

against other state-of-the-art AL sample selection techniques, in terms of reduction in

the # of labeled samples required to achieve a target model quality (F1-score) and

sample selection latency?

• How do the three modes of ontology-aware label propagation influence the

trade-off between the reduction in human labeling cost and model quality?

• How does semantic blocking influence label skew (class imbalance) and model

quality with varying degrees of blocking, compared to an existing representative

blocking technique?

In addition, I also study the effect of varying the number of ontology clusters

during sample selection on model quality.

4.5.1 Experimental Setup

4.5.1.1 Datasets

I use three real-world datasets the details of which are listed in Table 3. CMT-

CONF [104] and HUMAN-MOUSE [105] are publicly available datasets that each

78

Dataset #NodesLeft #NodesRight #PairsMatches #PairsTotal

CMT-CONF 39 77 15 3003
HUMAN-MOUSE 3298 2737 1516 9 Million

BANK-KAFS 2148 7170 394 15.4 Million

Table 3: Dataset details.

represent a pair of ontologies describing schemas from the publication and anatomy

domains respectively. The BANK-KAFS dataset is a proprietary dataset that contains

a pair of ontologies representing schemas from the finance (banking) domain. I had

access to ground truth (actual matching pairs) for all three datasets.2

4.5.1.2 Evaluation Metrics

I evaluate Alfa using the following metrics.

Progressive F1-score. I evaluate the effect of my proposed AL techniques on

model performance in terms of progressive F1-score [48, 150, 96, 51], a popular metric

used by the AL community. The progressive F1-score is computed across the entire set

of candidate pairs available for sample selection as a function of the #labels acquired

from the human (cost of labeling).

Sample selection latency. I use sample selection latency to measure the time

taken by my sample selection algorithm to select samples for human labeling.

Label skew. I measure the performance of my semantic blocking technique in

terms of its effect on label skew (class imbalance) on the training set as % of positive

labels out of the total set of labels.

Convergent progressive F1. This is the progressive F1-score that can be

achieved by a model during AL upon the exhaustion of all unlabeled pairs [96]. It

2The ground truth for BANK-KAFS was curated by Subject Matter Experts (SMEs).

79

is possible that the convergent progressive F1 is in practice achieved by the model

sooner than AL termination.

4.5.1.3 Baselines

I compare Alfa against several different baselines for each of my proposed AL

techniques.

Sample selection baselines. I compare the performance of my ontology-aware

sample selection technique against several other state-of-the-art techniques including

entropy-based selection [126, 103], Query-By-Committee (QBC) [99], and a recent

importance weighted sampling method called OASIS [89] from the generic AL literature.

From the link prediction literature [12], I include degree-based and centrality-based

selection with and without stratification. I also include a random sample selection

baseline which randomly selects samples for labeling from the available candidate

pairs.

Label propagation. I compare the effect of the different modes of my proposed

ontology-aware label propagation with the vanilla baseline of sample selection with no

label propagation.

Semantic blocking. I compare my proposed semantic blocking technique against

Jaccard similarity-based blocking that has been extensively used for entity match-

ing [155, 154, 99, 96].

80

4.5.1.4 Configurations and Settings

I conducted the experiments on a machine with 2.3 GHz 8-Core Intel Core i9

processor and 64GB RAM running Mac OS. I implemented Alfa using Python

3.9.5. I used PyTorch 1.8.1 as the deep learning platform for the implementation

of a GNN-based schema alignment [60]. I used scikit-learn 0.24.2 for implementing

K-Means clustering. Other generic parameter settings for Alfa are described below.

Seed label set. The seed label set is the initial set of labeled pairs used to train

the model, which is typically 0.1%-0.3% of the entire unlabeled set [96].

Batch size. In all the experiments, the #pairs selected in each AL batch is 1.27%

of the entire unlabeled set. This parameter value was arrived at empirically to control

the number of AL iterations (80) and thereby keep the overall runtime to less than 1

hr upon larger datasets like BANK-KAFS. In actual practice, the batch size would be

dependent on the number of samples a human would prefer to provide labels for, in

each iteration.

Termination criterion. AL iterations could be terminated either when the

labeling budget is exhausted or the desired model quality is achieved. In the current

implementation, I terminate AL after consuming all the unlabeled data3.

4.5.2 Evaluation of Ontology-Aware Sample Selection

Figures 24 and 25 show the evaluation of my ontology-aware sample selector against

several different state-of-the-art AL baselines including random, entropy-based, QBC-2

3The human-in-the-loop for labeling is simulated via the available ground truth of matches
between the two schemas.

81

5 505 1005 1505 2005 2505 3005
#Labeled Pairs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
og
re
ss
iv
e
F1

entropy
random

QBC-2
ALFA

OASIS

(a) CMT-CONF

10 2510 5010 7510 10010 12510 15010
#Labeled Pairs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
og

re
ss
iv
e
F1

entropy
random

QBC-2
ALFA(800C)

ALFA(20C)
OASIS(20C)

OASIS(800C)

(b) HUMAN-MOUSE

40 2540 5040 7540 10040 12540 15040
#Labeled Pairs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
og

re
ss
iv
e
F1

entropy
random

QBC-2
ALFA(800C)

ALFA(20C)
OASIS(20C)

OASIS(800C)

(c) BANK-KAFS

Figure 24: Evaluation of ontology-aware sample selection in Alfa against generic AL
baselines w.r.t. Progressive F1.

5 505 1005 1505 2005 2505 3005
#Labeled Pairs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
og
re
ss
iv
e
F1

ALFA vs. Link Prediction Baselines
(CMT-CONF)

ALFA
degreeSum
degreeCentralitySum
centralitySum
degreeStrat
degreeCentralityStrat
centralityStrat

(a) CMT-CONF

10 2510 5010 7510 10010 12510 15010
#Labeled Pairs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
og
re
ss
iv
e
F1

ALFA vs. Link Prediction Baselines
(HUMAN-MOUSE)

ALFA
degreeSum
centralitySum
degreeCentralitySum
degreeStrat
centralityStrat
degreeCentralityStrat

(b) HUMAN-MOUSE

40 2540 5040 7540 10040 12540 15040
#Labeled Pairs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
og

re
ss
iv
e
F1

ALFA vs. Link Prediction Baselines
(BANK-KAFS)

ALFA
degreeSum
centralitySum
degreeCentralitySum
degreeStrat
centralityStrat
degreeCentralityStrat

(c) BANK-KAFS

Figure 25: Evaluation of ontology-aware sample selection in Alfa against link predic-
tion baselines w.r.t. Progressive F1.

(QBC with 2 classifiers), OASIS as well as graph-based techniques such as degree-sum,

centrality-sum, a combination of both (degree-centrality sum with equal weightage to

both) with and without stratification. I combine the available ground truth of matching

pairs with negative pairs that are hard-to-classify from the Cartesian product to create

the evaluation set that includes both matching and non-matching pairs. I determine

these hard-to-classify negative pairs using a technique from a recent work Qin et al.

[115]. While I use the entire set of 3003 concept pairs within the Cartesian product

of CMT-CONF for evaluation, I reduce the 9M and 15M concept pairs from the

HUMAN-MOUSE and BANK-KAFS datasets respectively to ∼15K candidate pairs

82

5 505 1005 1505 2005 2505 3005
#Labeled Pai#s

10−5

10−4

10−3

10−2

10−1

100

101

Sa
m
pl
e
Se
le
ct
io

La
te
 c
y
(s
ec
, l
og
-s
ca
le
)

entropy
random

QBC-2
ALFA

OASIS

(a) CMT-CONF

10 2510 5010 7510 10010 12510 15010
#Labeled Pairs

10−4

10−3

10−2

10−1

100

101

102

103

Sa
m

p
e

Se
 e

ct
io

n
La

te
nc

y
(s

ec
, l

og
-s

ca
le

)

entropy
random

QBC-2
ALFA(800C)

ALFA(20C)
OASIS(20C)

OASIS(800C)

(b) HUMAN-MOUSE

40 2540 5040 7540 10040 12540 15040
#Labeled Pairs

10−4

10−3

10−2

10−1

100

101

102

103

Sa
m

p
e

Se
 e

ct
io

n
La

te
nc

y
(s

ec
, l

og
-s

ca
le

)

entropy
random

QBC-2
ALFA(800C)

ALFA(20C)
OASIS(20C)

OASIS(800C)

(c) BANK-KAFS

Figure 26: Evaluation of ontology-aware sample selection in Alfa against generic AL
baselines w.r.t. latency.

5 505 1005 1505 2005 2505 3005
#Labeled Pairs

10−2

10−1

100

Sa
m

pl
e

Se
le

c
io

n
La

 e
nc

y
(s

ec
, l

og
-s

ca
le

)

degreeSum
centralitySum
degreeCentralitySum
degreeStrat

centralityStrat
degreeCentralityStrat
ALFA

(a) CMT-CONF

10 2510 5010 7510 10010 12510 15010
#Labeled Pairs

10−1

100

101

102

Sa
m

pl
e

Se
le

c
io

n
La

 e
nc

y
(s

ec
, l

og
-s

ca
le

)

degreeSum
centralitySum
degreeCentralitySum
degreeStrat

centralityStrat
degreeCentralityStrat
ALFA

(b) HUMAN-MOUSE

40 2540 5040 7540 10040 12540 15040
#Labeled Pair

10−1

100

101

102

Sa
m
pl
e
Se

le
ct
io
n
La

te
nc

(
ec

, l
og

-s
ca

le
)

degreeSum
centralitySum
degreeCentralitySum
degreeStrat

centralityStrat
degreeCentralityStrat
ALFA

(c) BANK-KAFS

Figure 27: Evaluation of ontology-aware sample selection in Alfa against link predic-
tion baselines w.r.t. latency.

by employing negative sampling in the ratio 1:9 and 1:39. I set the default number of

ontology clusters to 20 (Alfa(20C)) while applying the sample selection strategies as

I empirically determined it to be a reasonable value to keep the sample selection times

low across all the datasets. I also show results for sample selection using 800 clusters

(Alfa(800C)) for larger datasets HUMAN-MOUSE and BANK-KAFS which was the

upper bound in terms of seeing a meaningful improvement in model performance at

the cost of more sample selection latency. For a fair comparison, I have also included

OASIS variants, OASIS(20C) and OASIS(800C) with 20 and 800 strata respectively.

83

This is because, OASIS employs stratification and assigns importance weights to strata

among which the most important stratum is chosen for sample selection.

Figures 24 and 25 show that my proposed ontology-aware sample selection tech-

nique outperforms all the baselines including degree-based and centrality-based link

prediction baselines with and without stratification across all three datasets. For

the graph-aware baselines, I notice that the stratified variants usually outperform or

perform similarly as their non-stratified counterparts for centrality-sum as centrality is

cluster-specific, thereby favoring stratification. On the other hand, degree-based selec-

tion is not cluster dependent and picks the best node pairs consisting of well-connected

and important nodes which tends to outperform its stratified implementation that

lacks the global view. Overall, the number of labels required by the best-performing

variants of Alfa to achieve a progressive F1-score of 0.9 is 18% (CMT-CONF),

48%(BANK-KAFS) and 73%(HUMAN-MOUSE) of the size of the corresponding

unlabeled set of pairs. Compared to Alfa, the next best performing baselines are

QBC-2 with a committee of 2 learners and entropy which require 64% of the unlabeled

pairs for both CMT-CONF & BANK-KAFS and 92% for HUMAN-MOUSE. Although

OASIS is comparable to QBC-2 and entropy on HUMAN-MOUSE dataset, it performs

worse then random sampling on CMT-CONF and BANK-KAFS. The reason is that

OASIS draws the unlabeled examples at random from the most important stratum

w.r.t. the computed weights. Therefore, if the best stratum is sufficiently large, the

F1-score fluctuates based on the quality of the random samples drawn from it.

Figure 26 shows the performance of my ontology-aware sample selection technique

against the generic AL baselines in terms of sample selection latency. As can be seen,

my proposed technique incurs reasonably low latency that is comparable to OASIS

and the entropy-based selection baseline. QBC with 2 classifiers (QBC-2) is the most

84

expensive. As expected, random sample selection is the fastest w.r.t. latency but it

also yields the least F1 scores (Figure 24). Alfa(800C) using 800 clusters performs

better than Alfa(20C) using 20 clusters in terms of F1-scores (Figure 24) but it also

incurs more sample selection latency. Figure 27 shows the latency comparisons with

the graph-aware link prediction baselines which also use 20 clusters. I can notice that

on the CMT-CONF dataset (Figure 27a), Alfa incurs more latency than the link

prediction baselines but on the larger HUMAN-MOUSE and BANK-KAFS datasets

(Figures 27b and 27c), the latency of the stratified variants of the link prediction

baselines are typically up to 10× higher than their non-stratified counterparts, and

my proposed ontology-aware selection in Alfa is 10×-17× faster than the stratified

graph-aware link prediction baselines.

4.5.3 Evaluation of Ontology-Aware Label Propagation

0 10 20 30 40 50 60 70 80
#Iterations

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
og

re
ss
iv
e
F1

Evaluation of Label Propagation
(CMT-CONF)

Adaptive
Conservative

Unrestricted
NoLabelProp

(a) CMT-CONF

0 10 20 30 40 50 60 70 80
#Iterations

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
og

re
ss
iv
e
F1

Evaluation of Label Propagation
(HUMAN-MOUSE)

Adaptive
Conservative
Unrestricted
NoLabelProp

(b) HUMAN-MOUSE

0 10 20 30 40 50 60 70 80
#Iterations

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
og

re
ss
iv
e
F1

Evaluation of Label Propagation
(BANK-KAFS)

Adaptive
Conservative
Unrestricted
NoLabelProp

(c) BANK-KAFS

Figure 28: Evaluation of various degrees of label propagation in Alfa.

I evaluate my ontology-based label propagation technique in terms of its influence

on the trade-off between the reduction in human labeling cost and model quality.

I do so by two sets of experiments. Figure 28 shows the first set of experiments

capturing the variation of the progressive F1-score with respect to the number of

iterations for the three modes of label propagation across three different data sets.

85

Unrestricted Adaptive Conservative0.0

0.2

0.4

0.6

0.8

1.0

0.67
0.6

0.880.83
0.75

0.44

Convergent Progressive F1
Fraction of Propagated Labels

(a) CMT-CONF

Unrestricted Adaptive Conservative0.0

0.2

0.4

0.6

0.8

1.0

0.54

0.72

0.95
0.87

0.78

0.45

Convergent Progressive F1
Fraction of Propagated Labels

(b) HUMAN-MOUSE

Unrestricted Adaptive Conservative0.0

0.2

0.4

0.6

0.8

1.0

0.37

0.59

0.8
0.88

0.81

0.47

Convergent Progressive F1
Fraction of Propagated Labels

(c) BANK-KAFS

Figure 29: Evaluation of the trade-off between convergent progressive F1 and fraction
of propagated labels in Alfa.

The comparative baseline is no label propagation. For all the three datasets, the

unrestricted mode of label propagation is the most aggressive and exhausts all the

unlabeled data in much fewer AL iterations while achieving the least progressive F1-

score. Compared to unrestricted, adaptive does a little better in terms of progressive

F1-score and conservative achieves the closest progressive F1-score to the baseline

for the HUMAN-MOUSE and BANK-KAFS datasets. For the smaller dataset CMT-

CONF, the adaptive performance is almost similar to unrestricted with a little more

longevity. This can be attributed to the fact that in my current implementation, the

adaptive mode uses the AL iteration number as the maximum number of candidates

to which label propagation is done for each pair. In the later AL iterations, the

remaining candidate pairs tend to be fewer in number than the iteration value which

leads to a behavior equivalent to the unrestricted mode.

Figure 29 shows the second set of experiments where I show the trade-off between

the reduction in the human cost of labeling and the convergent progressive F1-score

achieved by the three modes of label propagation across three datasets. For each

mode of label propagation, I show the fraction of propagated labels which is the

percentage of #unlabeled pairs which get labels using label propagation instead

of human labeling indicating the reduction in cost of labeling. I compare this to

86

the convergent progressive F1-score achieved by the mode of label propagation. As

can be seen in Figure 29, the unrestricted mode of label propagation provides the

most reduction in the cost of human labeling (∼80% across all the datasets) while

achieving a relatively lower F1-score. On the other hand, the conservative mode of

label propagation achieves the least amount of reduction in the cost of human labeling

(∼45% across all datasets) while achieving the closest F1-score to the baseline (i.e.

no label propagation). I found that the fraction of correctly propagated labels across

both matching and non-matching pairs is ∼97% for all the modes of label propagation

averaged across all the datasets. However, the fraction of matching labels correctly

propagated is ∼25% for unrestricted, ∼36% for conservative and ∼39% for adaptive

modes across all datasets. This decline in label propagation accuracy for matching

pairs is due to label skew.

4.5.4 Evaluation of Semantic Blocking

1 10 20 30 40 50 60 70
Blocking Clusters as % of Distinct Nodes

0

20

40

60

80

100

%
 Fa

lse
 N

eg
at

iv
es

 /
%

 P
os

iti
ve

 L
ab

el
s

False Negatives % Positive Labels %

(a) CMT-CONF

1 10 20 30 40 50 60 70
Blocking Clusters as % of Distinct Nodes

0

20

40

60

80

100

%
 Fa

lse
 N

eg
at

iv
es

 /
%

 P
os

iti
ve

 L
ab

el
s

False Negatives % Positive Labels %

(b) HUMAN-MOUSE

1 10 20 30 40 50 60 70
Blocking Clusters as % of Distinct Nodes

0

20

40

60

80

100

%
 Fa

lse
 N

eg
at

iv
es

 /
%

 P
os

iti
ve

 L
ab

el
s

False Negatives % Positive Labels %

(c) BANK-KAFS

Figure 30: Evaluation of the trade-off between false negatives % and positive labels %
for various degrees of blocking in Alfa.

I evaluate my proposed semantic blocking in terms of the trade-off between

reduction in quality of the model due to false negatives resulting from blocking and the

87

Dataset #Post-blocking Pairs
%False Negatives
Alfa Baseline

3003 0 0
134 20 66.7

CMT-CONF 69 33.3 66.7
40 26.7 66.7
9 66.7 73.3

9 M 0 0
57 K 17.2 82.1
27 K 20.1 82.6

HUMAN-MOUSE 20 K 21.1 82.7
6.3 K 22.6 84.7
2.8 K 24.8 84.8
1.2 K 28.2 85.8
15.4 M 0 0
0.11 M 30.5 12.7
12 K 36 30.8

BANK-KAFS 5.2 K 39.6 33.8
1.6 K 43.8 42
490 53 53
280 60 60

Table 4: Alfa vs. Jaccard similarity-based blocking baseline.

improvement in label skew in terms of improvement in the % of positive (matching)

labels. Figure 30 shows this trade-off between the % of positive labels and false

negatives (FNs) while increasing the # of blocking clusters. For uniformity across

datasets, I represent #blocking clusters as % of distinct nodes across the two ontologies

representing the datasets. I can observe that the slope of %positive labels (or the rate

at which label skew decreases) is higher than that of FNs thereby showing that the

benefits of my semantic blocking outweigh the penalty that it pays in terms of FNs.

Table 4 shows the comparison of my semantic blocking technique with a Jac-

card similarity-based blocking baseline. While my semantic blocking in Alfa uses

#ontology clusters to vary the degree of blocking, Jaccard similarity-based blocking

varies the similarity threshold. To perform a fair comparison, I picked several discrete

Jaccard similarity thresholds between 0 to 1, the most typical ones being 0.001, 0.01,

0.1, 0.2, 0.4, 0.6, 0.8 and tuned the #clusters in Alfa to achieve the same number of

post-blocking pairs as the baseline. I present the distinct #post-blocking pairs along

88

5 505 1005 1505 2005 2505 3005
#Labeled Pairs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
og

re
ss
iv
e
F1

Comparison of Selectors with Blocking Penalty
(CMT-CONF, 1% Blocking Clusters)

entropy
random
QBC-2

ALFA
OASIS

(a) 1% blocking clusters

5 64 123 182 241 300
#Labeled Pairs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
og

re
ss
iv
e
F1

Comparison of Selectors with Blocking Penalty
(CMT-CONF, 10% Blocking Clusters)

entropy
random
QBC-2

ALFA
OASIS

(b) 10% blocking clusters

5 15 25 35 45 55 65 75
#Labeled Pairs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
og

re
ss
iv
e
F1

Comparison of Selectors with Blocking Penalty
(CMT-CONF, 30% Blocking Clusters)

entropy
random
QBC-2

ALFA
OASIS

(c) 30% blocking clusters

5 10 15 20 25 30 35
#Labeled Pairs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
og

re
ss
iv
e
F1

Comparison of Selectors with Blocking Penalty
(CMT-CONF, 60% Blocking Clusters)

entropy
random
QBC-2

ALFA
OASIS

(d) 60% blocking clusters

Figure 31: Evaluation of sample selectors at various degrees of blocking in Alfa.

with %FNs for Alfa and the baseline. I observe that semantic blocking in Alfa

outperforms the baseline significantly on CMT-CONF and HUMAN-MOUSE, while

it is comparable on the BANK-KAFS dataset. The reason for this is extremely high

label skew in BANK-KAFS (394 matches out of 15.4M pairs) when semantic blocking

de-generates to performing similarly to the baseline.

Finally, Figure 31 shows the effect of blocking on model quality. I plot the variation

of the progressive F1-score for different sample selection techniques upon the CMT-

CONF dataset for different degrees of blocking. The results as expected, show that

the higher the degree of blocking, the poorer is the model performance. Alfa does

better than all the baselines in terms of model quality (Progressive F1-score) for

89

5 505 1005 1505 2005 2505 3005
#Labeled Pairs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
og

re
ss
iv
e
F1

Varying #Clusters in ALFA
(CMT-CONF)

20 Clusters
100 Clusters
10 Clusters
5 Clusters

(a) CMT-CONF

10 2510 5010 7510 10010 12510 15010
#Labeled Pairs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
og

re
ss
iv
e
F1

Varying #Clusters in ALFA
(HUMAN-MOUSE)

20 Clusters
100 Clusters
800 Clusters
500 Clusters

(b) HUMAN-MOUSE

40 2540 5040 7540 10040 12540 15040
#Labeled Pairs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
og

re
ss
iv
e
F1

Varying #Clusters in ALFA
(BANK-KAFS)

20 Clusters
100 Clusters
800 Clusters
500 Clusters

(c) BANK-KAFS

Figure 32: Varying the number of ontology clusters during ontology-aware sample
selection in Alfa.

blocking up to 30% which can attributed to the reduction in pruning of false negatives

achieved by semantic blocking as compared to the other techniques. Blocking beyond

30% blocking clusters (#clusters are plotted as a %of distinct nodes as explained

earlier), leads to poorer performance in terms of model quality with no significant

difference among various sample selectors. This can be attributed to the increase in

false negatives as I increase the degree of blocking.

4.5.5 Alfa: End-to-End System Usability

Having seen the evaluation of my sample selection, label propagation and blocking

techniques, I now provide a brief summary on the usability of Alfa in terms of the

different parameter settings and their effect on Alfa’s performance.

Choosing number of clusters. Ontology clustering is a critical step for both

sample selection and label propagation in Alfa. In Figure 32, I vary the #clusters

from (5 to 100) for CMT-CONF and 20 to 800 for HUMAN-MOUSE and BANK-

KAFS keeping the sizes of the unlabeled pairs in these datasets in perspective. I can

notice that while fewer than 20 clusters yield a lower F1-score, increasing #clusters

beyond 20 does not bring any significant benefit in F1-scores for CMT-CONF. On

90

similar lines, 500 clusters are enough for the HUMAN-MOUSE dataset and 800 for

the BANK-KAFS dataset to achieve the best possible F1-score. This indicates the

need to use a larger number of clusters as schema size increases, and a requirement to

empirically determine this number beyond which there is no substantial gain in model

quality (F1-score). Automatic detection of #clusters can be done using ELBOW

method [127] or silhouette-coefficient [121].

Choosing the mode of label propagation. The choice of the mode of label

propagation depends on the actual cost of human labeling and the available labeling

budget. While unrestricted mode of label propagation can be used for maximum

reduction in human labeling, it comes at the cost of lower model quality. The

conservative mode allows a fine grained control over the amount of label propagation

and should be a suitable choice in most cases based on available budget for human

labeling.

Choosing the degree of blocking. In my experimental evaluation, I observed

a substantial degradation in model performance beyond 30% blocking. Users could

choose a % below 30, depending on the size of the dataset and the amount of label

skew.

91

Chapter 5

EVALUATION OF MACHINE LEARNING ALGORITHMS FOR SQL QUERY

PREDICTION

In this chapter, I will present the solution to the research problem Q3 that I have

discussed in Section 2.1.1, which falls under the category of “SQL-based Predictive

Analytics”. In Sections 2.1.1.1 and 2.2.3 in Chapter 2, I have emphasized upon the

importance of query prediction and how the predicted queries can either explicitly

or implicitly be recommended to a human-in-the-loop who is exploring the unified

database prepared out of the data integration step. In this chapter, I will first discuss

how SQL queries can be predicted using temporal predictors (Meduri, Chowdhury,

and Sarwat [94]) followed by Collaborative Filtering (CF) baselines. Next, I will detail

two real-world datasets, how SQL queries are represented as numerical feature vectors

upon them and finally, I will present the experimental results towards the end of this

chapter.

5.1 Recurrent Neural Networks

Recurrent neural networks (RNNs) [106, 69] are powerful temporal predictors and

hence, I adapt them to the task of next query prediction. Given a one-hot encoded

numerical feature vector for the fragments within a SQL query (see Section 5.5 for

details about SQL fragments and one-hot encoding generation) at timestep Ti, my

goal is to predict the next query (feature vector) issued by the user at timestep

Ti+1. Figure 33 illustrates the training as well as the prediction (test) phases of this

92

adaptation. Contrary to baseline query recommenders such as collaborative filtering,

RNNs are streaming-friendly and are easy to train incrementally.

(a) Training Phase

(b) Parallelized Prediction (Test) Phase: Historical-RNN

Figure 33: Recurrent Neural Networks for Next SQL Query Prediction

The training data for my adapted RNN is always fed as pairs of embeddings -

< Queryi,Queryi+1 > out of which Queryi is treated as the query at the current timestep

Ti and Queryi+1 is the query to be predicted from the next timestep Ti+1. I also use

a batch normalization layer and drop-out regularization for stable predictions. The

prediction phase of RNNs can pick the top-K next query candidates from the historical

pool of queries seen so far. As my evaluation shows that “Historical-RNN”s are poor

in prediction quality and latency, I propose “RNN-Synth” that synthesizes novel next

queries in constant time.

93

5.1.1 Historical-RNNs

As shown in Figure 33b, the trained RNN Model is used to predict the next queries

to the input queries that are fed at the input layer from several instances of Ti. I

use inverse binary cross entropy as the similarity function to compare the numerical

output vector produced by an RNN against the one-hot historical query embeddings

and pick the top-K queries with the least entropy. Also, I use random sampling similar

to CF techniques discussed in Section 5.3 to alleviate the latency associated with

top-K next query detection. The only difference is that, CF techniques build their

models which entirely depend on the session structure (Cosine similarity based CF

uses session summaries as a model while NMF-SVD based CF uses sessions as rows

of the matrix). Therefore, CF techniques use two-stage sampling to first select the

sample of sessions, out of which queries are sampled again. In contrast, RNN models

are session-agnostic as their training data consists of <current query, next query>

pairs. Thus, in this case, the sample queries are directly picked from the entire set of

distinct historical queries regardless of the sessions they belong to. I speed up query

prediction by using parallel processes across queries (inter-query) and within each

query while probing the historical queries (intra-query).

5.1.2 Synthesizing Next Query Fragment Vectors using RNN -Synth

While the training phase of RNN-Synth remains the same as that of historical

RNNs as shown in Figure 33a, the difference is in the prediction phase. Instead of

relying on historical query samples, RNN-Synth synthesizes the next query (fragments)

directly from the output probabilistic vectors. This requires the prediction phase to

94

infer a one-hot encoding for the next query, which is a multi-dimensional Boolean

vector, from the probabilistic output vector. There are a few challenges in achieving

this.

• Converting a probabilistic vector into a Boolean vector requires setting a suitable

probability threshold. All the dimensions whose probabilities are above this

threshold will have their bits set to 1. However, in several output vectors, the

highest probabilities can be lesser than 1.0 (around 0.7, for example) which

necessitates different thresholds for different queries.

• It is not necessary that the Boolean vector obtained via thresholds corresponds

to a meaningful SQL query. I will need to make fixes to possible SQL violations

that may arise. An implicit requirement is that such fixes need to be made in

real-time with minimal latency.

(a) Prediction (Test) Phase (b) Synthesizing Next Query from Normalized Out-
put Vector

Figure 34: Recurrent Neural Networks (RNN-Synth) for Next Query Synthesis

Figure 34a shows the prediction phase of RNN-Synth in which N output prob-

abilistic vectors of Dim dimensions undergo three transformation steps in order to

produce the next query embeddings. These are (a) Output vector normalization,

(b) Top-K threshold application on the normalized output vectors and (c) Fixing

the SQL violations in the next query embeddings. For output vector normaliza-

95

tion, I transform each probabilistic dimension such that the least and the highest

values are 0 and 1 respectively. For each dimension index i ranging from 0 to Dim,

Output[i] = Output[i]-min(Output)
max(Output)-min(Output) , where min(Output) and max(Output) denote the

minimum and maximum probability values from the output vector. This normalization

step allows me to apply uniform thresholds on all the test queries regardless of the

original probability value distribution within the output embedding vector. From the

[0,1] range I choose three discrete thresholds - 0.8, 0.6 and 0.4 for top-K when K=3.

All the bits corresponding to dimensions whose output probabilities exceed 0.8 will be

set to 1 to obtain the top-1 result. Likewise, top-2 and top-3 predictions are chosen

by setting the bits for those dimensions whose output probabilities exceed 0.6 and 0.4

respectively. With increasing K, I discretize the [0,1] range at a fine-granular level

thereby obtaining more thresholds. For instance, if I were to choose the top-10 next

queries, I can choose {0.0, 0.1, 0.2, ..., 0.8, 0.9} as the thresholds if we want to be recall-

friendly. On the other hand, if I want to be conservative and retain high precision, I

can set a minimum threshold of 0.35, for instance, and choose{0.35, 0.4, 0.45, ..., 0.8}

as the top-10 thresholds. In my experiments, I set K to 3. Figure 34b shows how a

threshold of 0.6 is used to convert a normalized output vector into a multi-dimensional

bit vector. The values highlighted in red exceed the threshold and are hence set to 1

while the other dimensions remain unset at 0. As mentioned before, this bit vector

may not represent a meaningful SQL query.

In order to regenerate the SQL query fragments from the bit vector and vice-versa,

I create a bi-directional dictionary that stores the bit position and the corresponding

SQL fragment as a <key,value> as well as <value,key> pair. Thus I can key in either

the bit position or the fragment to obtain its counterpart from the bi-directional

dictionary. In the example shown in Figure 34b, to regenerate the SQL query from

96

the embedding, I only need constant time O(1) forward lookups on the bi-directional

dictionary. However, I can notice a violation in the SQL fragments, which is to have a

Group By operation applied to the ID column from JosMenu table without having ID

as a part of the projection list. Now I have two options - either include JosMenu.ID

column into the projection list or drop the Group By operation on the same. While

the former is a heuristic aimed at enhancing recall, the latter enhances precision.

Although I support both, I present results using the former heuristic of adding missing

fragments which is better than dropping existing fragments. This is because, the

query embeddings are originally sparse and dropping set bits is going to make the

predicted embedding even sparser while not significantly improving prediction quality.

In order to add or drop query fragments from the embedding, their corresponding

bit positions are required for which I make another O(1) backward look-up on the

bi-directional dictionary as shown in the figure. Following is a list of possible SQL

violations which require similar fixes. Note that I use the terms column and attribute

interchangeably.

(a). Column-Table Violations: This is the case where for a column that is either in

the projection or aggregate (AVG / MIN / MAX / SUM / COUNT) or GROUP BY

or ORDER BY or HAVING clauses, I do not find the table that it belongs to within

the relation list of a query. To fix such a violation being recall-friendly, I add the

missing table to the relation list of the query embedding. Alternatively, a conservative

precision-oriented fix would be to drop the column.

(b). Join Violations: If one or more tables for the columns participating in a join

predicate are not in the relation list of a query, I add the missing tables to the relation

list for enhanced recall. For enhanced precision, I drop the join predicate. An example

join predicate can be LeftTable.LeftCol = RightTable.RightCol and one or both of the

97

LeftTable and the RightTable may not be in the tables (relation list) of the FROM

clause.

(c). Group By Violations: There are two possible kinds of violations. In the first

variety, the projection list contains a column that does not belong to the group by

list when a GROUP BY clause is present. To fix this, I either add the projected

column to the group by list for recall enhancement or drop it altogether if I were to

favor precision. The second type is a symmetric violation in which a group by column

neither belongs to an aggregate operation in the projection list nor is it individually

projected. I fix this by adding the group by column also to the projection list (for

recall), or drop it from the group by operation (for precision).

(d). Having Clause Violations: If a column is present in the HAVING clause, but does

not have an aggregate operator associated with it, I either add an aggregation to the

column (for recall) or drop the column from the HAVING clause (for precision). The

most likely aggregate operator among the five operations (AVG / MIN / MAX / SUM

/ COUNT) with the highest probability in the normalized output vector is added for

enhanced recall.

(e). Selection Predicate Violations: A selection predicate fragment consists of three

components - a selection column, a comparison operation (one of =, 6=, ≤, ≥, <,

>, LIKE) and a constant range bin. The violations can also be of three kinds - (a)

a selection column may not have either the comparison operation or the constant

range bins (or both) present in the query, (b) a comparison operation occurs along

with a selection column but the column or a corresponding constant range bin may

not be present among the set bits for the query embedding, (c) a constant range bin

may have its bit set in the embedding when either the corresponding column or the

comparison operator (or both) are absent from the predicted selection predicate.

98

The fixes are fairly generic and symmetric across all the three possible violations.

If the missing element is a column, I can recognize it unambiguously as the column

which is associated with the comparison operator and constant range bin. Instead,

if the missing element is a comparison operator or a constant range bin, it is set to

be the most probabilistic dimension and included into the query fragments for recall

enhancement. For example, a selection predicate embedding sub-vector (σvec) may

contain a bit set for an “Age” column from JosMenu table (JosMenu.Age) but neither

the comparison operator nor the constant range bin might have been set. These are

picked to be those fragments with the highest probabilities in the normalized vector,

although they might not have exceeded the threshold. Assuming an example threshold

0.6, a comparison operator < and a constant range bin [15-20] may have respective

probabilities 0.32 and 0.44 but these may be the most likely bins if we must pick them

for the age attribute. In such a case, the corrected selection predicate in the predicted

query contains the fragments {JosMenu.Age (selection column), < (operator), [15-20]

(equi-depth range bin within which the actual constant may lie)}. Alternatively, to

favor precision, the fragment causing the violation is dropped from the predicted

embedding.

(f). Null Vital Fragments: If there are no bits set in the predicted embedding for most

vital fragments such as DML Type, tables (relation list), projection list, I default them

to the fragments within the current query for which the next query is being predicted.

In cases where the relation list is present in the query but the projection list is NULL,

I select the most likely column from one of the relations into the projection list.

For each test query, I need to normalize its embedding, impose a threshold and fix

the violations. While normalization and threshold application require a scan on all

the Dim dimensions in the embedding, fixes only require O(1) forward and backward

99

look-up operations upon the bi-directional dictionary for specific dimensions within

the embedding whose count is far below Dim. Therefore, prediction using synthesis

based RNNs is exceptionally fast. Another important thing to note here is that while

I use nested parallelism for historical RNNs, I do not need to use any parallelism for

synthesis based RNNs.

5.2 Reinforcement Learning

I adapt the Exact Q-Learning algorithm as the reinforcement learning paradigm

for next query prediction. While I direct the reader to Watkins and Dayan [160]

and Russell and Norvig [124] for complete details of the algorithm, here I describe

how I adapt the algorithm to predict the next query embedding in a user interaction

session. Exact Q-Learning uses Markov Decision Processes (MDPs) to capture the

temporal dependencies among various states and materializes the long-term rewards

(or penalties), also called as Q-values, for all possible state transitions within a Q-

Table. While the rows of a Q-Table indicate all possible states, the columns in it

represent the entire vocabulary of actions. At each state, the action that an agent

takes transitions it to a different state and also fetches an instantaneous reward or

a penalty out of which its long-term reward is estimated. A long-term reward or a

Q-value indicates the sum of the instantaneous reward that the agent gets for taking

the action and the look-ahead reward that it gets for the optimal sequence of actions

thereafter until the goal state. Given a start state and a goal state, Q-Learning can

find the optimal sequence of <state,action> pairs (also called as policy) yielding the

highest reward for the agent. Q-Learning is useful for query fragment prediction for

the following reasons.

100

(a) Modeling Q-Table for Next Query Prediction (b) Illustration of Bellman Update

Figure 35: Exact Q-Learning for Next Query Prediction

1. Although queries in an OLAP session follow a sequence, they have a significant

difference from traditional time-series applications. User interaction sessions

against the database are goal-oriented, and the queries are progressively steered

towards interesting insights drawn by the user at the end of the session.

2. The query prediction algorithm needs to penalize intermediate queries that steer

away from the eventual goal query and reward those queries that quickly take a

user towards her goal.

3. In contrast to applications such as games that have a fixed goal, each user session

can have a distinct goal query that makes the problem of query prediction

significantly harder.

4. Q-Learning can capture long-term, look-ahead rewards in the form of Q-values

that can estimate the cumulative effect of a transition from the current query to

the next query when these queries are represented as states in the Q-table.

My adaptation of exact Q-Learning for next query prediction has the following

components:

101

• Learning agent : This is my next query predictor modeled as an RL agent that

learns the Q-table and predicts the next query.

• State/action space: The set of distinct embeddings of the training queries

represents the state/action space. Note that both the state and the action in

the Q-table is a distinct training query as shown in Figure 35a. Query execution

is the action performed and the state reached corresponds to the query from

the next time step, and hence, I identify both the state and the action space by

the set of queries. Q-Learning can also support stochastic actions in uncertain

environments that require POMDPs (Partially Observable Markov Decision

Processes). MDPs are sufficient for query prediction because, the actions here

are deterministic. The environment is certain about the next SQL query (next

state) that the agent goes to when it makes a specific transition from the current

SQL query (current state).

• Environment : hosts the reward function that captures the ideal temporal

sequence of queries.

• Reward : is issued by the environment as a response to an agent action to reflect

whether or not the the next query that is being chosen by the agent indeed

succeeds the current query. I support two types of reward functions - Boolean

and Numeric which will be detailed.

During the training phase, the RL agent populates the Q-table based on the

temporal sequence of queries from the training sessions. In the offline train and

online test experiments, I build the Q-table based on the training sessions, whereas in

the case of online training and testing (streaming scenarios), the Q-table is updated

episodically based on the incoming batch of test-then-train queries. As one can notice

from Figure 35a, the set of distinct queries forms the query vocabulary. The Q-table

102

that the RL agent builds is a square matrix and has both its rows and columns

pointing to the queries in the vocabulary. QRewi/j represents the Q-value which is the

look-ahead long-term cumulative reward that the RL agent gets upon executing Queryj

after Queryi. Note that the Q-values are refined over time as the RL agent gets exposed

to more training sequences. Each time an RL agent sees Queryj following Queryi, it

updates QRewi/j based on an equation called Bellman update (see Figure 35b). Since

I only keep track of distinct queries, the number of possible < Queryi,Queryj > query

pairs is also limited that keeps the size of the Q-table bounded as well. However, it is

not feasible to encounter all possible pairs from the Q-table within the training data.

Also, I may not encounter each pair enough number of times during training. This

is because, if I were to rely only on the temporal pairs from the training data, the

Q-table would be very sparse. In order to make the Q-table dense and to enhance

the effect of the pairs seen during training, I apply a combination of tabular variants

of two techniques from the Q-Learning literature called experience replay and random

action exploration.

5.2.1 Tabular Variant of Experience Replay and Random Action Exploration

In order to improve the stability of training by learning the Q-values effectively,

two prominent techniques called Experience Replay [128] and ε-greedy random action

exploration [167, 98] are available in the RL literature. Experience replay periodically

re-trains the RL agent upon the training experiences (< Queryi,Queryj > query pairs

in our case) it has encountered before. ε-greedy random action exploration ensures

that the RL agent is also exposed to transitions it is likely to miss during training.

Therefore, for each state, instead of always training on the actions with the highest

103

Q-value, it also picks random actions to train upon, with a small (ε) probability. While

both these techniques are frequently applied in Deep Q-Learning scenarios, I apply

their tabular variants to my Exact Q-Learning implementation. Deep Q-Learning

uses a separate replay memory to store the training transitions whereas, I already

capture all possible transitions in a Q-table that makes the application of these

techniques easy and lightweight in my case. At the end of each training episode (online

test-then-train or singularity evaluation) or after offline training (sustenance), the

RL agent randomly samples several <state,action> pairs from the vocabulary and

populates their corresponding Q-values. This is equivalent to picking a random pair

of distinct queries, checking whether they succeed one another or not, and updating

their Q-values based on the reward function. If the queries in a sampled pair succeed

each other, it is equivalent to applying experience replay as I would have encountered

that pair during training. Instead, if the queries in such a pair do not succeed each

other, it is equivalent to applying random action exploration as that pair would not

have been seen during training. My ε value is 0.5 as I equally bias towards seen and

unseen pairs from the training set of sessions.

These techniques reduce the sparsity in the Q-table and also improve the accuracy

of Q-values. Let me consider an example pair of successive queries < Qi,Qj > (i.e.,

j=i+1) and assume that the current Q-value(< Qi,Qj >) is 1.0. If I randomly pick

that pair again during experience replay, as per the Bellman update equation, the

updated Q-value(< Qi,Qj >) will be 1.0 × α + (1-α) × (instantaneous reward + γ ×

maxk Q-value(< Qj,Qk >)). Substituting 0.5 for both learning rate α and discount

rate γ, and 1.0 for both the instantaneous reward and maxk Q-value(< Qj,Qk >),

the updated Q-value(< Qi,Qj >) would be 1.25. Instead, if I pick a pair of queries

which do not succeed each other (random action exploration where j 6=i+1) with an

104

instantaneous reward and current Q-value(< Qi,Qj >) both of which are 0.0, the

updated Q-value(< Qi,Qj >) would be 0.0 × α + (1-α) × (instantaneous reward

+ γ × maxk Q-value(< Qj,Qk >)). Making the same substitution for maxk Q-

value(< Qj,Qk >) which is 1.0, I would get an updated Q-value(< Qi,Qj >) of 0.25.

This shows that whether the queries within the randomly sampled query pair succeed

each other or not and regardless of whether or not this pair was encountered during the

training phase, there will always be an update to the Q-value at the current state if the

Q-value at the next state is non-zero. This is because of the recursive definition of Q-

values in the Bellman equation that makes the Q-value at the current state dependent

on the Q-value at the next state. Reinforcement learning inherently captures the

sequence information via a Q-table, and therefore, any additional observations of

already observed query sequences will further reinforce the Q-values.

5.2.2 Prediction (Test) Phase

Given a test query (TestQuery i) during the prediction (test) phase as shown

in Figure 35a, in order to find its successor, the RL agent first checks if the query

embedding for TestQuery i exists in the vocabulary of distinct queries. If I do not

find a matching query embedding, I compute the cosine similarity of the test query

embedding with the embeddings of all the distinct queries in the vocabulary to find

the most similar query. Once such a query is found in the vocabulary that can act as

a proxy to the test query, I find its top-K next queries with the highest Q-values and

return them as the successors to the test query. In the example shown in Figure 35a,

QueryN from the vocabulary is most similar to TestQuery i. Within the row for QueryN,

the highest Q-value is for a transition to Query2 which is returned as the top-1 successor

105

of TestQuery i. For higher values of K, I use a max-heap to return the top-K successors.

I use inter-query parallelism to partition the test queries among several processes.

Although I can also allow for nested parallelism by partitioning the distinct queries

for cosine similarity computation (intra-query parallelism), I found that inter-query

parallelism is optimized enough and finds top-K queries with minimal latency.

5.2.3 Reward function

The reward function reflects the temporality among queries at each timestep during

a query session. Let us assume that the current user query is Queryi at timestep τi,

and the RL agent i.e., the next query predictor predicts a query Querypred
i+1 for timestep

τi+1. I support two types of reward functions. For the Boolean reward function, if the

actual user query Queryuser
i+1 , which is the ground truth, matches the predicted query

Querypred
i+1 , the RL agent gets a reward of 1, else it gets a reward of 0. For Numerical

reward function, I return the cosine similarity between the embeddings of Queryuser
i+1

and Querypred
i+1 as the reward to the RL agent. Based on this function, it is clear that

the instantaneous reward is a value between 0 and 1. However, this is not true for

the Q-value. This is because, Q-values are cumulative look-ahead rewards from a

given state until the goal state. Q-values cannot be normalized because their absolute

values need to be compared among several columns to predict the top-K next queries.

5.2.4 Setting Learning Rate and Discount Factor

As shown in Figure 35b, while navigating from the start state (ST) denoting the

first query in a user session until the goal state (G) that represents the last query in

106

the session, at any given intermediate state Si, the RL agent chooses an action (query)

that yields it the maximum cumulative future reward. There is an exploration vs.

exploitation trade-off that we can notice here. The quality of an RL agent depends on

the accuracy of the Q-values which get refined with more learning episodes. I balance

the exploration vs. exploitation trade-off by setting the parameters in the Bellman

update [124] (Equation 5.1) used for Q-Learning.

QRewi/j = QRewi/j(1− α) + α ∗ [rewi/j + γ ∗ optRew(Sj,G)] (5.1)

α refers to the learning rate and γ refers to the decay rate, also called as discount factor,

both of which lie between 0 and 1. If the RL agent chooses Queryj to be executed

after Queryi, this decision fetches it an instantaneous reward which is summed to a

discounted look-ahead optimal reward obtained from the remaining queries until the

termination of the session (goal state) as illustrated in Figure 35b. Note that if γ is

set to 0, the RL agent chooses to execute a query corresponding to Sj after Si, instead

of Si+1, based on the instantaneous rewards (0.5 > 0.3 from the figure). Instead, if γ is

set to 0.5, we choose Si+1 which yields a curQRew(Si, ai+1) = 0.6 which is greater than

curQRew(Si, aj) = 0.505. This allows it to capture the effect of cumulative reward.

However, a higher γ than this will not only take a longer time to train but will also

prefer longer paths to the goal state. On similar lines, the value of α determines the

extent to which the value of QRewi/j needs to be updated each time we encounter

Queryj (corresponding to state Sj in Figure 35b) after Queryi that corresponds to Si

in the figure. A higher value of α biases the Q-value more towards the more recent

executions of Queryj after Queryi, thus asking for more update steps, whereas a lower

α does not refine the Q-table. Hence, we set both γ and α to 0.5 that allows the

RL agent to explore just enough to reach an acceptable convergence to the right

107

Q-values within the Q-table and thereby make accurate action predictions (optimal

exploitation) at a given state.

5.3 Collaborative Filtering Baselines

I implemented two Collaborative Filtering (CF) baselines for query recommendation

- one is Cosine Similarity based approach followed in QueRIE [43] and the other is a

matrix factorization based approach from Eirinaki and Patel [42]. Note that I have

enhanced these existing approaches w.r.t. latency to be scalable over huge query

logs by parallelizing the prediction phases as I did with my temporal predictors. For

memory optimization, I generated the secure hash (SHA-256) of each query embedding

so that the in-memory consumption incurred by CF baseline is low. This ensures that

I compare my proposed temporal predictors against competitive baselines.

Figure 36: Cosine Similarity based Collaborative Filtering

108

5.3.1 Cosine Similarity based CF

In order to adapt cosine similarity based CF for next query prediction, I represent

each user session as a summarized bit vector of query fragments which are present

among all the queries in the session. As mentioned in Figure 36, I obtain a session

summary by applying a bit-wise OR upon the individual one-hot bit vector (fragment)

embeddings of all the queries in the session. Our trained model is the set of summaries

built on the training sessions. In static offline-train-and-test (termed as sustenance in

short) experiments, the train sessions are strictly non-overlapping with the test sessions.

On the other hand, for streaming online-test-then-train (termed as singularity)

experiments, the train summaries keep growing with #episodes as more sessions are

streaming and their queries keep accumulating. Hence, in each episode, some of the

streaming batch of queries may belong to the set of ongoing training sessions whereas,

others may belong to fresh sessions that start from the current episode.

Given a test session TestSess 1 as shown in Figure 36, with “test1.length” #queries

in it so far, in order to predict the next query in the sequence, Querytest1
next , I first

compute the Top-K sessions from the training set whose summaries have the highest

cosine similarity with that of TestSess 1. Out of these top-K train sessions, I find the

top-K queries whose fragment embedding bit vectors have the highest cosine similarity

with the bit vector summary of TestSess 1. Following are a few important things to

take note of:

• While matching a test session with the training sessions, I avoid the comparison

of a test session with itself, as test and train sessions can be non-overlapping in

streaming scenarios.

• Although the train session summaries are complete and are computed over all

109

the train sessions and queries seen until a given episode, identifying the top-K

sessions and top-K queries similar to a test session employs sampling. This is

similar to QueRIE [43] which deploys random sampling upon historical sessions

to obtain a pool of candidate queries from which top-K queries are recommended.

The only difference is that in streaming scenarios, the sessions and queries get

updated with time which necessitates the sampling to be done before query

prediction in each episode.

• For effective sampling, I keep track of the distinct queries (which have unique

fragment embedding bit vectors) in each session.

Figure 37: NMF-SVD based Collaborative Filtering

5.3.2 Matrix Factorization based CF

I represent the historical (training) queries as a matrix of |Train Sessions| x |Query

Vocabulary| dimensionality, in which training sessions form rows and distinct queries

constituting the query vocabulary seen thus far indicate the columns of the matrix.

Similar to Eirinaki and Patel [42], I use Non-negative Matrix Factorization based

Singular Value Decomposition (NMF-SVD) [78] from the scikit library to decompose

the matrix into two latent factor matrices of dimensionalities |Train Sessions| x |Latent

110

Dims| and |Latent Dims| x |Query Vocabulary| respectively as shown in Figure 37.

The original matrix contains 1.0 in specific cells to indicate the queries that occur in

each of the training sessions. Note that a distinct query from the vocabulary represents

a unique set of query fragments. Once I multiply the factored matrices, the original

matrix gets completely filled up where the cell entries represent the probability with

which a query (column) may occur in a specific session (row). As mentioned before, in

the case of sustenance experiments, train and test sessions do not overlap with each

other. On the other hand, in singularity experiments, there is a possibility that train

and test sessions do overlap (but not the queries).

In Figure 37, TestSess 1 indicates a test session that is already present in the

training set of sessions. Because of the streaming nature of queries in the singularity

experiments, new queries are getting appended to that session. Let us assume that

Query(k) and Query(n) along with a few other training queries are already present in

TestSess 1 and now, I need to predict the next query Querytest1
next . Since this is a row

which is already present in the factorized and completed matrix, I pick the top-K

cells with the highest cell probabilities from the NMF completion as the possible next

queries. For TestSess 1, the top-K (k=3) queries can be either Query(2) or Query(1)

or Query(n-1). In the case of singularity, the updated test session with the actual

succeeding query eventually becomes a part of the updated matrix, towards the end of

the test-then-train episode. Hence, the matrix factorization and completion happens

in each episode as a part of the training process.

TestSess 2, on the other hand, represents a test session that was unseen in the

training set of sessions. While this is possible in both streaming and non-streaming

scenarios, this is more likely to happen during the sustenance (80% train, 20% test

sessions) experiments as the train and test sessions are strictly non-overlapping. In

111

such situations, we can notice that a query that occurs in a test session can totally be

out of the training vocabulary of seen queries. Query(n+1) in Figure 37 represents one

such out-of-vocabulary query that occurs in TestSess 2. If I need to predict the next

query, Querytest2
next , for such out-of-vocabulary test session, I cannot rely on this session

alone as it is not present in the completed matrix. To tackle this cold-start problem

for out-of-matrix sessions, I keep track of the summaries for a sample set of training

sessions. Since a session summary is a bit-wise OR of all the query embeddings from

the session, cosine similarity can be computed between each sampled training session

and the summary of the ongoing out-of-query-vocabulary test session. The closest

training session already in the matrix can be used to predict the top-K next query

candidates for the ongoing test session. In Figure 37, I find that TrainSess 2 is most

alike to TestSess 2, out of which the top-K queries are suggested as the next query

candidates for TestSess 2. I sample session summaries to save on the computation of

similar sessions.

5.4 Datasets

Course Website is created from the interaction sessions and SQL query logs auto-

matically generated out of a website used to teach database courses at a university.

The website hosts a rich repository of lecture transcripts, Q & A sessions between

instructor and students, and forum discussions amongst the students themselves.

The website content is automatically stored in the MySQL engine as a relational

database forming the backend to the website. When a student logs into the course

website, she has a variety of user actions to perform using the web interface such as

a scroll on the forum discussions, or a click on a user profile or lecture recording. A

112

student can create, update and delete information on her user profile ranging from

bio-data to reading lists, her comments during a discussion on a forum thread, and

assignment or homework submissions. All these actions are internally converted into

SQL queries and are logged by the MySQL engine as interaction sessions. Applying

next query prediction on this dataset can predict the next action that the user is

about to take such as, but not confined to: (a) the next search query to retrieve

some course information or a search for discussions on a specific topic (DML Type =

SELECT), or (b) posting a lecture recording/material or a response/question on the

Q & A forum (DML Type = INSERT), or (c) an update to the reading list or the

user profile (DML Type = UPDATE/DELETE).

Bus Tracker is a mobile application which updates its database periodically with

the bus locations (DML Type = INSERT/UPDATE) besides allowing the users to

live-track the bus location, and find its route information along with the nearest bus

stops to their current location (DML Type = SELECT) [85]. The user queries are

logged in the SQL format while the database backend is stored on a PostgreSQL

server. While the database schema and SQL queries are available, the content of

the tables (i.e., the tuples) is not publicly available. This is because, Ma et al. [85]

predict the arrival rate of query templates which exclude constants and this obviates

the need for access to the actual underlying data. In contrast to their work, I predict

the fragments within the next query which also comprise ranges of constants in

the selection predicates. This requires access to the relational tuples from which I

generate equi-depth value range bins (histograms) for each of the attributes (columns)

participating in selection predicates. Therefore, my prediction of selection predicates

in the next query includes constants and comparison operators only for the Course

Website dataset. For the Bus Tracker dataset, the selection predicate prediction is

113

only confined to the attributes that participate in such predicates, because of the lack

of access to the database tuples.

The information about the user corresponding to each session is not stored in both

the Course Website and the Bus Tracker datasets. Upon interacting with the creators

of the Course Website dataset, I found that each distinct session only consists of the

queries from a single user but a user can create multiple sessions. The same holds true

for the BusTracker dataset as well, because a user session involves finding the location

of a bus or the nearest bus stop and a user is allowed to access the mobile application

several times over distinct sessions. So there is a one-to-many relationship from the

users to the sessions in both the datasets. I do not need to identify the user for each

session because, my adaptation of ML algorithms does not require such information.

The train and test splits for evaluation are created upon a permuted set of sessions

which are shuffled enough to eliminate any bias w.r.t. the users who created them, in

case consecutive sessions in a dataset are assumed to be from the same user. Each

session is fed independently in a user-agnostic manner to the ML algorithms during

the training or test phase.

5.4.1 Session-Cleaning Heuristics

An interaction session can be defined as a sequence of queries issued by a user

in a given time frame in order to accomplish an insert / update task (transactional)

or to derive an interesting insight (analytical) from the data. Although both the

Course Website and the Bus Tracker datasets contain transactional queries, they

are predominantly analytical with 89% and 86% SELECT queries respectively that

support goal-oriented exploration. The query logs for Course Website and Bus Tracker,

114

stored in MySQL and PostgreSQL respectively, are pre-organized into sessions. For

Course Website, a unique session ID is assigned for each interaction and is stored

in an Id field. Another attribute, Command, specifies whether the interaction is a

SQL query or not. For instance, the first few interaction steps in each session involve

connecting to and initializing the database. Such queries are marked as “Connect” or

“ InitDB”. Every other command that involves a SQL statement is marked as “Query”.

In the case of Bus Tracker, each session has a distinct ID and all the SQL queries

that belong to the same session appear consecutively along with their session ID. I

logged the SQL queries from the users of Course Website over a span of two weeks

and pre-processed the logs using a set of heuristic rules to differentiate the interaction

sessions of crawlers (bots) from those that are more human-like.

Crawler generated sessions can have two properties - “repetition” and “recurrence”.

Repetitive interactions contain consecutive queries which have the same SQL fragments

and the only variation is in the constants. For example, Q1: select * from Posts where

course_id=1; and Q2: select * from Posts where course_id=2; From the Course

Website query logs, I prune any session containing such consecutive queries that are

entirely the same except for the constants. Even though my query prediction system

does predict constants from the selection predicates, having too many of repeated

query sequences will make the prediction task trivial and negatively influence the

quality of the predictor. To reduce the bias in prediction and to clearly distinguish

among the predictive abilities of various ML algorithms, I only retain non-trivial query

sequences in the sessions. In order to achieve this in a time-efficient manner without

having to actually convert the SQL query into its fragment vectors, I prune sessions

containing consecutive queries whose textual representations have a Cosine similarity

≥ 0.8. This is a conservative similarity threshold chosen after manually examining

115

several sample SQL query pairs. In the case of Bus Tracker dataset, almost every

query session contains repetitive query patterns. Although this does not impact Ma

et al. [85] whose focus is on predicting the count of query templates, for the purpose

of query fragment prediction, it is important that I remove such repetitions. So from

each query session, I remove such repeated query patterns to retain non-trivial query

sequences.

Recurring patterns are usually concatenations of the same type of interactions

that can artificially enhance the length of a session. For instance, there are sessions

which are recurring blocks of two queries such as Q1: select * from Reading_List; Q2:

select * from Course_Instructors; Q3: select * from Reading_List; Q4: select * from

Course_Instructors; Such a sequence can prolong to as many as 200 queries which are

100 concatenations of the two SQL queries. I observed that the basic building block

of recurring query patterns can contain more than two queries and it is difficult to

parameterize the length of a recurring query block. Since I noticed that longer sessions

are more likely to be crawler-based than shorter ones, I imposed a session length

limit of 50 (a conservative threshold chosen after a manual examination of several

random samples of user sessions) and thereby restricted the number of queries in a

session in order to ensure that the recurring patterns are human-intended. Any session

containing more than 50 queries is not included into the clean set of query logs. This

also reflects typical user behavior and allows our dataset to contain non-trivial query

sequences capturing realistic human interactions. This heuristic is applied uniformly

for both the datasets to sufficiently eliminate bot-generated sessions from the session

logs.

My data cleaning heuristics are similar to those used in Singh et al. [135]. Bot-like

patterns involving repetition and recurrence can easily be learned by any ML baseline

116

even with aggressive sampling, thus bringing no significant insight about the best

performing approach. It would be unfair to the ML algorithms if their performance

is compared upon the bot-generated sessions as the conclusion drawn from such an

experiment would not be meaningful. This is because, without applying the pre-

processing techniques, simply predicting that the next query will most likely be the

same as the current query gives an extremely high prediction quality to all the ML

algorithms.

My preprocessed query logs consist of 114,607 SQL queries and 43,893 clean

sessions from Course Website, while the Bus Tracker dataset contributes to 5,640

clean sessions containing 22,106 SQL queries. The raw datasets contain 214 M and 25

M queries respectively. Table 5a contains a SQL operator-wise distribution of various

types of queries.

5.5 Schema-aware Query Fragment Embeddings

I represent each SQL query by a one-hot encoded feature vector that is a bit-wise

representation of the fragments that occur in the query. Query fragments are defined

as the SQL operators, their associated schema elements such as tables and attributes

and also the comparison operators and constants that occur in the selection predicates.

I create individual bit vectors for each fragment, the concatenation of which produces a

holistic fragment embedding for the entire query. The fragment embedding has a fixed

length uniformly for all the SQL queries, because the dimensionality of the bit vector is

dependent on the SQL semantics and the underlying database schema. The fragment

embedding quvec for a query qu is produced by concatenating the bit vectors of several

117

fragments in a fixed order as follows: quvec = Query TypevecRelation ListvecΠvec Aggrvec

σvec GROUP BYvec ORDER BYvec HAVINGvec LIMITvec ./vecσ.OPvecσ.CONSTvec.

Fragment %Queries %Queries
(Course Website) (Bus Tracker)

Query (DML) Type = SELECT 88.93 86.0
Query (DML) Type = INSERT 2.26 3.4
Query (DML) Type = UPDATE 7.63 10.6
Query (DML) Type = DELETE 1.18 0.0

Projection (π) 98.58 100
Selection (σ) 97.53 95.21

Join Predicates (./) 3.66 25.74
GROUP BY 0.004 0.0

Sort (ORDER BY) 27.59 12.95
Aggregate (MAX) 0.007 0.0
Aggregate (SUM) 0.034 0.0

Aggregate (COUNT) 9.79 13.16
LIMIT 20.59 0.854

(a) Operator-wise Query Distribution

Fragment #Dimensions #Dimensions
Course Website Bus Tracker

Query Typevec 4 (SELECT/UPDATE/INSERT/DELETE) 4
Relation Listvec #Tables = 113 95

Πvec #Columns = 839 770
Aggrvec #Columns x 5 = 4195 (AVG,MIN,MAX,SUM,COUNT) 3850
σvec #Columns = 839 770

GROUP BYvec #Columns = 839 770
ORDER BYvec #Columns = 839 770

HAVINGvec #Columns = 839 770
LIMITvec 1 1

./ (JOIN)vec # {LeftTable.Column, RightTable.Column} = 92045 1355
σ.OPvec #σ.Columns (=109) x 7 = 763 (=, 6=,≤,≥, <,>,LIKE) N/A

σ.CONSTvec #Equi-depth range bins for σ.constants = 704 N/A

(b) Query Fragments in the Embedding Vector

Dataset No Change Partial Change Total Change
Course Website 16.63% 0.209% 83.15%

Bus Tracker 6.17% 21.54% 72.28%

(c) Relation List (Table) Transition Statistics

Table 5

118

5.5.1 SQL Operator Fragments

Table 5b shows the number of bits pre-allocated to each fragment. Query (DML)

Type is indicated by 4 bits each of which stands for one of SELECT, UPDATE, INSERT

or DELETE. Likewise the relation list in the FROM clause can possibly include one or

more tables from the underlying database schema. The attributes participating in the

projection list, selection predicates, GROUP BY, ORDER BY and HAVING clauses

are captured using individual bit vectors each of which has a dimensionality equal

to the number of attributes |Attr| in the database schema, indicating the #columns

that these operators can be associated with. Aggrvec is a concatenation of five most

common aggregate operators - AVG, MIN, MAX, SUM and COUNT and thus has a

dimensionality of |Attr| ∗ 5 bits. LIMITvec records the presence of the LIMIT keyword

in the query and uses a single bit as it is not associated with a schema element. I

capture both self-joins and multi-table joins through possible join fragments that

can occur in a query. A join fragment is defined as the pair of columns that occur

in a join predicate. Although the possible predicates can be combinatorial in the

number of attributes (|Attr|C2), I reduce them to 92,045 and 1,355 for the datasets by

only allowing columns of the same data type to participate in a join predicate. To

handle the huge dimensionality of the join fragment vectors, I prune column pairs with

mis-matching data types from the candidate space of join predicates and also exclude

arithmetic comparison operators such as =, <,> from a join predicate. Nevertheless,

I represent the comparison operators along with the value range bins for constants in

the selection predicates of a query.

119

5.5.2 Selection Predicate Constants and Comparison Operators

Contrary to the embedding bit vectors for the operator fragments that record the

occurrence of SQL operators with the schema elements (tables or columns), the bit

vectors for the comparison operators (σ.OPvec) and constant range bins (σ.CONSTvec)

make certain assumptions. While the former are created in a generic manner for the

entire schema, in the case of the latter, I assume that I am privy to the set of columns

that occur in the selection predicates across the entire workload. Note that this

assumption is only to represent the comparison operators and constant ranges in the

selection predicates. In order to generate the bit vector for columns that participate in

the selection predicates (σvec), I do not make any assumptions. Out of 839 columns in

the database schema for Course Website, I noticed that 109 columns participate in the

union of selection predicates across the 114,607 queries. A selection predicate can be

denoted as {ATTR, OP, CONST-BIN} out of which the bit vector for attribute, ATTR,

is generic and gets a full dimensionality of the total #columns (839 for this dataset) in

the schema. To represent the comparison operators (=, 6=,≤,≥, <,>,LIKE) I need 7

bits per column that can potentially turn the dimensionality into 839 x 7 = 5873 but

I restrict the representation to 109 columns which allows our bit vector for σ.OPvec

to contain 109 x 7 = 763 bits instead. Along similar lines, I also represent the value

range bins, CONST-BINs, for the constants in the selection predicates on the set

of 109 attributes as described below. As mentioned before, I predict the constant

bins and comparison operators only for the Course Website dataset but not the Bus

Tracker dataset due to the lack of availability of actual data (tuples) for the latter.

I partition the distinct values from each of the 109 attributes of the Course Website

schema that can possibly occur in the selection predicates of a query into 10 equi-depth

120

range bins, where depth denotes the tuple frequency of a distinct column value. For

example, an attribute ranging from 0 to 100 may get 10 range bins with one of the bins

getting a value range of {0−40} if it is terribly sparse as compared to the other ranges.

I thus partition the total tuples into multiple bins such that each bin approximately

contains the same number of tuples. However, it should be noted that if the cardinality

of the entire set of distinct values from a column is lesser than 10, I produce fewer

than 10 value range bins for that column. A constant in the selection predicate of

a query from a matching column may fall into one of these range bins or may not

belong to any of these bins in which case it will belong to an 11th default bin that

is used to represent NULL values. This is because, some of the selection predicates

check whether a column IS NULL or IS NOT NULL that we translate into “=” for the

comparison operator and the “NULL” bin for the constant. Out-of-range constants in

a query that do not match any of the distinct values of a column will be defaulted to

the NULL bin. Although I anticipated the dimensionality of σ.CONSTvec to be 109

x 11 = 1199, I ended up with 704 bits for the constant value range bin vector because

of the inherent skew in the value distribution for some columns. Unlike Kipf et al. [75]

who assume uniform distribution for a column and represent constants as normalized

values between 0 and 1 in order to estimate join cardinalities, I construct equi-depth

range bins to be resilient to skew. While the feature vectors in [75] are specific to join

cardinality estimation using RNNs and the constants are only applicable to numerical

data types, my proposed embeddings support the prediction of an exhaustive list of

SQL operators and constants of all data types, regardless of the data size. In addition

to this, I apply these embeddings upon a host of ML algorithms not restricted to

RNNs.

I parse each query in the interaction workload using JSQLParser[66] and obtain

121

the operator fragments in the query. My fragment embedding creation detects the

presence of nested queries (with any number of levels) and adds additional selection or

join predicates to reflect the correlation between the outer query and the inner query.

In the case of nested queries containing IN and NOT IN, I add the corresponding

selection predicate or join predicate fragments depending on whether the sub-query is

an expression of constant value list or an actual SQL query containing a projection

list.

For INSERT and UPDATE queries, the projection list is parsed as those columns

into which values are inserted or updated, while DELETE queries do not have a

projection list. Once the parsed fragments are obtained, I look up the bit positions

for each fragment in a schema dictionary and set them in the embedding vector of

the query. It is important to note that the embedding generation time also adds

to the response time as for each query, I create an embedding and feed it to the

query predictor in order to predict the next query. However, I perform the embedding

vector generation in an offline step for the entire query workload because all the

machine learning (ML) algorithms use the same set of embedding vectors and hence

the pre-processing time for embedding creation remains the same. Moreover, the

sequence of queries the ML algorithms predict a successor for is exactly the same for

all the approaches.

5.6 Parameter Settings

In this section, I discuss the parameter values that we set for each algorithm.

(a). Generic Parameters: There are a few parameters that are generic across all the

ML algorithms.

122

• Episode Size - I set the #queries in an online test-then-train singularity episode

to 1000. This was set to keep the episode wide enough to get statistically

significant test metric observations.

• Top-K - I set K to 3 across all the ML algorithms. This was empirically set

to ensure that even the worst performing ML algorithm does not take longer

than an hour per test-then-train episode of 1000 queries (as mentioned above)

to predict the successor queries.

• Degree of Parallelism - I set the parallelism to 48 processes. This was set based

on the 12 CPUs on my server which are hyper-threading enabled and allow for

4 virtual CPUs per core. Also, note that I allow two modes of parallelism -

single level of parallelism (inter-query) and nested parallelism with both inter

and intra query parallelism. In the former case, I spawn 48 processes, whereas

in the latter, I spawn 3 threads at the outer level each of which in turn spawns

16 processes. So at any given moment, I do not have more than 48 processes

running in parallel. The #threads does not influence CPU time as they are

I/O-bound and the test phase of all the ML algorithms is CPU-bound.

• Sampling Rate - In the case of Cosine Similarity based Collaborative Filtering

(CF), the model learned is a set of session summaries. Therefore, to ensure that

during the test phase, the top-K next queries are picked from training sessions

which are similar to the ongoing test session, I follow two level sampling. I

sample 1% of the training sessions at the outer level and I sample 3 queries

per session at the inner level. These parameters are empirically set to ensure

that CF techniques do not consume exceptionally long test times. Likewise,

for NMF-SVD based CF, the model is a matrix whose rows represent training

sessions. Here I sample 1% of the training session summaries to facilitate quick

123

comparison of an ongoing test session with the historical sessions. For RNNs and

Q-Learning, the trained models and the test phase are not directly dependent

on the session structure. Therefore, I randomly sample 10% of the distinct

queries from the training set for historical RNNs and Q-Learning. Synthesis

based RNNs do not require sampling as their test phase does not depend on

historical queries.

(b). Cosine Similarity based CF: I use inter-query parallelism with 48 processes to

parallelize the test phase of CF as it is more effective than nested parallelism.

(c). NMF-SVD based CF: I set the number of latent dimensions during matrix

factorization to 10% of the number of distinct queries, however not exceeding 100.

The 10% limit is imposed when the number of distinct queries is lesser than 100 during

the initial singularity episodes. Other parameters include those I set for non-negative

matrix factorization from the scikit-learn library. I use “nndsvdar” as the random

value initialization procedure for sparse matrices. Likewise, I use multiplicative update

solver which is more efficient and faster than coordinate descent. Remaining NMF

parameters are set to default values. I use inter-query parallelism with 48 processes

to parallelize the test phase of CF as it is more effective than nested parallelism.

(d). Recurrent Neural Networks: I run experiments with all the three variants of

RNNs - vanilla RNNs using simple backpropagation, Long Short Term Memory

(LSTM) and Gated Recurrent Units (GRU). For all these three variants, I use a single

hidden layer containing 256 hidden nodes. I use 40 epochs during RNN training, and

dropout regularization that turns off 50% of the hidden nodes during training. As

mentioned before, while I use 3 threads each spawning 16 processes for historical

RNNs, I use single threaded implementation for synthesis-based RNNs. Other neural

network specific parameters such as activation functions have been discussed in

124

Section 5.1.

(e). Q-Learning: As mentioned before, I use 0.5 for both learning rate (α) and

decay rate or discount factor (γ). I sample 100 random pairs of queries from the

distinct query vocabulary for experience replay and random action exploration. I use

inter-query parallelism with 48 processes to parallelize the test phase of Q-Learning

as it is more effective than nested parallelism.

5.7 Experimental Evaluation

All my experiments were conducted on a machine running Ubuntu 16.04 OS, with

a 12-core 3.0 GHz Xeon E5-2687WV4 processor, 120 GB RAM and 4.0 TB hard disk.

Hyper-threading is enabled with 4 virtual CPUs per core that results in 48 CPUs

in total. I implemented embedding creation in Java using JSQLParser and the next

query prediction framework in Python because of the extensive library support that

exists for Python from scikit (for NMF-SVD based CF) and Keras/TensorFlow (for

RNNs). Cosine similarity based CF and Q-Learning were implemented from scratch

in Python.

5.7.1 Results of Sustenance Evaluation

In this set of experiments, I train each of the compared ML algorithms offline

on 80% of the total sessions. Upon undergoing such extensive training, I evaluate

if the learned ML models can demonstrate sustained high quality performance over

a held-out test set of 20% sessions. As mentioned in Section 5.4.1, there are 43,893

125

clean sessions consisting of 114,607 queries in the Course Website dataset and 5,640

clean sessions comprising 22,106 queries in the Bus Tracker dataset after applying the

session cleaning heuristics. Note that in Table 6 presenting the number of test and

train sessions as well as queries, the session splits maintain the 80% train, 20% test

proportion whereas the query splits need not exactly maintain that ratio as different

sessions may contain variable #queries.

Dataset #Train Sessions #Train Queries #Test Sessions #Test Queries
Course Website 35115 91385 8778 23222

Bus Tracker 4512 17430 1128 4676

Table 6: Sustenance - Train and Test Sessions & Query Splits

From the test query count presented in the table, I need to discount the last query

in each session because the successor is not predicted for it. Therefore, the number of

test queries for which the next query is predicted is 14,444 for Course Website and

3,548 for Bus Tracker.

5.7.1.1 Quality and Latency Results

Figures 38 and 39 present the average test prediction quality and latency of all

the ML algorithms on the Course Website and Bus Tracker datasets respectively. I

plot the algorithms with the following abbreviated names in the same order in each

figure - Q-Learn (for Q-Learning), RNN-S (for RNN-Synth), CF-SVD (for NMF-SVD

based CF), CF-Cos (Cosine Similarity based CF) and RNN-H (Historical RNNs). I

sorted the algorithms based on their decreasing order of performance in a majority of

experiments.

126

Q-Learn RNN-S CF-SVD CF-Cos RNN-H0.0

0.2

0.4

0.6

0.8

1.0

Sustenance - Avg Quality Measures
 (Course Website)

F1-Score Precision Recall

(a) F1-Score, Precision & Re-
call

Q-Learn RNN-S CF-SVD CF-Cos RNN-H10−1

100

101

102

103

104

105
Sustenance - Train and Test Times (secs)

 (Course Website, log-scale)

Train Test

(b) Train and Test Times
(Secs)

Q-Learn RNN-S CF-SVD CF-Cos RNN-H0.0

0.2

0.4

0.6

0.8

1.0

Sustenance - Avg Mean Reciprocal Rank
 (Course Website)

(c) Mean Reciprocal Rank

Figure 38: Sustenance Experiments (Course Website): Quality and Time Measures
(80% Train, 20% Test)

Q-Learn RNN-S CF-SVD CF-Cos RNN-H0.0

0.2

0.4

0.6

0.8

1.0

Sustenance - Avg Quality Measures
 (Bus Tracker)

F1-Score Precision Recall

(a) F1, Precision, Recall & Ac-
curacy

Q-Learn RNN-S CF-SVD CF-Cos RNN-H10−1

100

101

102

103

104
Sustenance - Train and Test Times (secs)

 (Bus Tracker, log-scale)

Train Test

(b) Train and Test Times
(Secs)

Q-Learn RNN-S CF-SVD CF-Cos RNN-H0.0

0.2

0.4

0.6

0.8

1.0

Sustenance - Avg Mean Reciprocal Rank
 (Bus Tracker)

(c) Mean Reciprocal Rank

Figure 39: Sustenance Experiments (BusTracker): Quality and Time Measures (80%
Train, 20% Test)

The primary takeaways from the F1-scores in Figures 38a and 39a are as follows -

Exact Q-Learning consistently outperforms all other ML algorithms closely followed

by synthesis based RNNs, thus showing the effectiveness of using temporal predictors

for next query prediction task over using CF-based query recommender baselines.

CF-Cos consistently performs poorly as it picks the next queries totally out of

the sampled training data. CF-SVD, on the other hand, relies on sampling only to

identify similar training sessions to the ongoing test session. It picks the next query

from the completed matrix which can assign a similarity score even to those queries

that have very few historical occurrences thereby handling sparsity. CF-SVD captures

127

the essence of session similarity more effectively than CF-Cos instead of using direct

cosine similarity score computed between sessions. Even then, CF-SVD falls short

of temporal predictors while performing better only on the Bus Tracker dataset as

compared to the Course Website. This is because, Bus Tracker has a fairly small

amount of possible next query pairs, i.e., 625 from 25 distinct query embeddings

learned during training, as compared to Course Website that has 501,264 possible

pairs generated from 708 distinct trained query embeddings. This makes Bus Tracker

an easier dataset even for recommender systems that are temporality-agnostic.

Similarly, RNN-Synth consistently outperforms RNN-Historical thereby demon-

strating the power of synthesizing novel next query embeddings over picking a historical

query that has the least entropy with the predicted output vector. This is achieved

by synthesis because of its ability to identify the fragments which occur in the next

query based on the probabilities of various dimensions in the output vector emitted

by the RNN. Instead, RNN-H relies on least entropy heuristic that often picks his-

torical queries which have as few bits set as possible. This is because, entropy is

least when only those dimensions are set that have the highest confidence. Therefore,

RNN-Historical can predict the DML type of the next query accurately as it tends

to be “SELECT” for most of the workload. The most surprising result comes from

Q-Learning that achieves a test F1-score of 0.95 on Course Website and 0.98 on Bus

Tracker. This is plausible because of Exact Q-Learning which accurately learns the

rewards and penalties for all possible pairs of <current query, next query> temporal

sequences that occur during the training phase, into a Q-table. By default, I use

the numerical reward function during the training phase for Exact Q-Learning that

rewards partially overlapping predictions of next queries over totally penalizing them.

Besides F1-score, I also measure the average Mean Reciprocal Rank (MRR) which

128

is defined as 1
Rank of the Most Matching Query to identify the effectiveness of the top-K next

query candidates predicted by each ML algorithm. The MRR of RNN-Synth is

≥0.8 on both the datasets (see Figures 38c & 39c). This means that out of the

top-3 results, the topmost result has the highest similarity with the ground truth.

Likewise, the MRR of Q-Learning is high on Course Website although it drops to

0.7 on Bus Tracker. The MRR of CF-SVD and RNN-Historical are low on both

the datasets. Surprisingly, CF-Cos achieves a near 1.0 average MRR on both the

datasets. Upon examining its predicted next queries, I found that in several cases,

all the predicted next queries are equally bad, and by default CF-Cos picks the first

query out of top-3 for the computation of test F1-score. Thus, it achieves the highest

MRR purely out of serendipity. The latency results in Figures 38b and 39b contain

some interesting patterns. The most interesting result is that RNN-Synth, despite

having a single-threaded prediction phase, manages to achieve the best test latency

on Course Website which is the larger dataset. This observation does not hold on Bus

Tracker because, it has relatively low dimensional embeddings, and other approaches

outperform RNN-Synth during test phase. Overall, Q-Learning achieves the least

cumulative train & test time on both the datasets and emerges the overall winner on

both quality and latency. Note that I use the same degree of test phase parallelism for

all the approaches barring RNN-Synth, and the training phase remains unparallelized

for all of them.

5.7.2 Results of Singularity Evaluation

Figures 40 and 41 show the properties of the Course Website and Bus Tracker

datasets w.r.t. the singularity experiments. We notice that the session length distribu-

129

0 10 20 30 40 50
Session Length

100

101

102

103

104

Co
un

t (
lo
g-
sc
al
e)

Session Lengths
(Course Website)

(a) Session Lengths

2 22 42 62 82 102
#Episodes

0

200

400

600

800

#Q
ue

rie
s

Query Distribution
(Course Website)

(b) Queries

2 7 12 17 22 27 32 37 42 47
QueryID

50

60

70

80

90

100

110

St
ar

tin
g

Ep
iso

de
 ID

Query Progression
(Course Website)

(c) Query Progression

2 22 42 62 82 102
#Episodes

100

101

102

103

Qu

er
ie

s (
lo

g-
sc

al
e)

Query Type Distribution
(Course Website)

#DELETE
#INSERT
#SELECT
#UPDATE

(d) Query Types

Figure 40: Singularity (Dataset Properties, Course Website): Session and Query
Distribution

0 10 20 30 40 50
Session Length

100

101

102

103

Co
un

t (
lo
g-
sc
al
e)

Session Lengths
(Bus Tracker)

(a) Session Lengths

2 7 12 17 22
#Episodes

0

200

400

600

800

#Q
ue

rie
s

Query Distribution
(Bus Tracker)

(b) Queries

2 7 12 17 22 27 32 37 42 47
QueryID

6

8

10

12

14

16

18

St
ar
tin

g
Ep
iso

de
 ID

Query Progression
(Bus Tracker)

(c) Query Progression

2 7 12 17 22
#Episodes

101

102

103

Qu

er
ie

s (
lo

g-
sc

al
e)

Query Type Distribution
(Bus Tracker)

#DELETE
#INSERT
#SELECT
#UPDATE

(d) Query Types

Figure 41: Singularity (Dataset Properties, BusTracker): Session and Query Distribu-
tion

tions of the clean query logs from both the datasets have long tail property with only

a few sessions being long and a majority of the sessions being short. With respect to

the number of queries that stream in, each episode strictly has 1000 queries except the

last episode that may contain the left over queries. However, in Figures 40b and 41b,

we notice that several episodes have fewer than 1000 queries. This happens because,

in each episode, there can be several queries marking the end of the session and such

queries are discounted as they do not have a successor. Thus, the query count plotted

in these figures only shows the number of queries in each episode for which the ML

algorithms predict the next query. The query progression plotted in Figures 40c

and 41c shows that the arrival rate of new queries within the concurrent sessions is low

and sparse during the several initial episodes (episode length = 1000 queries), whereas

130

the queries start changing more frequently towards the later episodes thus indicating

that prediction of the next query during the later episodes is harder as compared to

prediction during the initial episodes. While all the “DELETE” queries typically occur

during the first 40 episodes in the Course Website dataset, insertions and updates

become fewer during the later episodes beyond 80. However, the “SELECT” queries

approximately maintain the same frequency over all the episodes. While “DELETE”

queries do not exist in the Bus Tracker dataset, “UPDATE” queries show some fluctu-

ation and become fewer in the later episodes of concurrent sessions. “SELECT” and

“INSERT” queries, on the other hand, maintain a reasonably high frequency during

each episode all the way until the end.

(a) F1-Score

2 12 22 32 42 52 62 72 82 92 102 112

#Episodes

102

103

104

R
e
s
p
o
n
s
e
 T

im
e
 p

e
r

E
p
is

o
d
e
 (

s
e
c
s
) Singularity - Response Time vs. #Episodes

(Course Website, log-scale)

(b) Response Time

Figure 42: Singularity Experiments (Course Website): Quality and Time Measures

(a) F1-Score

2 4 6 8 10 12 14 16 18 20 22

#Episodes

10 1

100

101

102

103

104

R
e
s
p
o
n
s
e
 T

im
e
 p

e
r

E
p
is

o
d
e
 (

s
e
c
s
) Singularity - Response Time vs. #Episodes

(Bus Tracker, log-scale)

(b) Response Time

Figure 43: Singularity Experiments (BusTracker): Quality and Time Measures

In singularity experiments, queries keep streaming from concurrent sessions in an

131

episodic manner and the ML algorithms predict the next query for each query that

streams in (as long as it is not the last query from a session). Towards the end of the

episode, the learned model so far gets updated based on the queries from the episode.

The purpose of these experiments is to test if a model can achieve a self-managed

behavior or a singular point beyond which it consistently predicts the next queries

accurately. Figures 42a and 43a present the average test F1 scores of various ML

algorithms in each episode w.r.t. next query prediction. We can notice that in the

case of Course Website, both Q-Learning and RNN-Synth show a monotonically

increasing behavior in prediction quality although with some fluctuations towards

the later episodes. This is because queries 3 to 49 arrive at a really rapid rate in

those later episodes and it presents a challenge to the algorithms in predicting the

next queries. In a general sense, although we cannot say that the algorithms strictly

achieve singularity, both these temporal predictors show some consistency in yielding

high test F1 scores with more episodes.

Another interesting thing to note here is that until episode 42, all the concurrent

sessions stream in their first query. Note that both the RNN variants, RNN-S and

RNN-H, consume the training data in pairs of <current query, next query>, and they

cannot make any predictions until 42nd episode. This is because, during that phase,

there are no such training query pairs to learn a model from, and thus both RNN-H

and RNN-S yield a 0 test F1 score. In contrast to these algorithms, Q-Learning and

CF variants start producing test F1-scores despite them not being high, right from

the first episode. This is because the Q-Table and session summaries start getting

populated from the very beginning. Q-values are initialized to 0 until the second query

is observed; but a random prediction can still happen. I present the query progression

on the quality plots to enable a better understanding of how the test F1 score patterns

132

correlate with the arrival rate of queries. The test F1-scores in the case of Bus Tracker

dataset show a fluctuating, erratic behavior because of the small size of the dataset.

There is no real convergence point for any of the algorithms except for Q-Learning

that manages to again yield consistently high test F1-scores. Note that the test data

here changes for each episode unlike the sustenance experiments that have a held-out

test set. Another reason for the fluctuating F1-scores is that the Bus Tracker dataset

has very few distinct embeddings. This means that the same query embedding may

have different succeeding queries across different episodes, thus rendering the sampled

sessions or fragment weight learning ineffective for both CF and RNN algorithms

respectively. Q-Learning using numeric reward function captures these nuances more

effectively and can thus adapt to the shifting successor query patterns in each episode.

Figures 42b and 43b present the response time in each episode for each ML

algorithm. Note that the response time includes the next query prediction latency for

all the queries in that episode summed to the re-training time of the model towards the

end of the episode. We can observe a strict correlation between the query distribution

in Figures 40b and 41b to the response times on those datasets. For instance, the

latencies for Course Website see a decline between episodes 42 and 92 before they

rise thereafter. This is because the number of queries which have successors drops in

that interval based on Figure 40b. Likewise, on the Bus Tracker dataset, we notice

a decline in latency at episode 12 when the query count decreases (see Figure 41b).

We can observe that the response time for RNN-H is the worst and keeps growing

with more episodes as the sampled history of queries keeps growing. This growth is

not that sharp for CF-Cos as it follows a two-level sampling where session samples

gradually increase with time at a higher rate than queries. Still, we can notice a

monotonically increasing response time because the re-training for CF algorithms

133

is cumulative and not incremental with each episode. RNN-Synth and Q-Learning

are both capable of incremental training and hence, their response time grows the

least. Consistent with the sustenance latency observations, Q-Learning consumes the

least latency for singularity experiments as well. This is because its cumulative train

and test time only consists of Q-Table construction and Q-Table look-ups both of

which can take constant time for a fully materialized Q-Table, especially if the query

vocabulary within an episode already exists in the Q-Table. RNN-Synth also requires

constant time prediction but it is not parallelized. Even then, its test time is actually

lesser even than Q-Learning. The reason RNN-Synth comes next to Q-Learning is its

longer train time as compared to Q-Learning. In the case of Bus Tracker, the query

embeddings are of low dimensionality and the query vocabulary is small. This results

in parallelized test phase of CF algorithms outperforming single-threaded RNN-Synth

on latency. I have explained the reasons for not being able to parallelize RNN-Synth

in Section 5.1.2. RNN-Historical still consumes the highest response time also for the

Bus Tracker dataset owing to its long training and test latencies.

5.7.3 Query Re-generation and Result Comparison

In this section, I evaluate the performance of the ML algorithms w.r.t. the execution

results of the predicted next queries and how they compare to the expected result

set of tuples from executing the ideal successor queries. Among the two datasets,

Course Website has underlying data, whereas the Bus Tracker dataset [85] only provides

the schema but not the data. Therefore, my experiments on evaluation of query

results are confined to the Course Website dataset. I use the same settings as the

sustenance experiments by training on 80% of the query sessions and testing on

134

the remaining 20% sessions. Table 7 presents some vital statistics about both the

Cardinality #Tables
0 - 10 65

11 - 100 26
101 - 1000 14
1K - 10K 5

10K - 100K 2
> 100K 1

(a) Cardinality Frequency

#Zero Results #Non-zero Results
3299 9584

(b) Query Result Distribution (Sustenance)

Table 7: Table Cardinalities and Query Execution Statistics (Course Website)

underlying data and the query workload. Among the 113 tables in the Course Website

schema, 65 tables have fewer than 10 tuples. We can observe in Table 7 that the

number of tables keeps reducing with increasing cardinalities thereby forming a long-

tail distribution. Although I did not notice a strong bias, I have observed that the

small and medium-sized tables with cardinality lesser than 1K frequently participate in

the query workload. Following the train, test splits from Section 5.7.1, among 23K test

queries, there exist 14,444 non-terminating queries which are followed by a successor

query in their corresponding user sessions. As I have mentioned earlier in Table 7a,

89% of the query workload comprises SELECT queries as it is predominantly OLAP.

I observed 12,883 SELECT queries among the 14K non-terminating test queries which

we use for query result comparison. A majority of these queries return non-zero

results upon execution (see Table 7b), although I compute quality metrics on queries

returning both zero and non-zero results.

135

5.7.3.1 Query Re-generation

In order to re-generate a SQL query from the predicted SQL fragments, I follow

either of the two following approaches - (a) SQL reconstruction or (b) SQL borrowing

which borrows a historical SQL query from the training sessions. SQL reconstruction

creates a SQL query entirely based on the predicted SQL fragments whereas, the

latter approach borrows a SQL query from the training sessions that exactly matches

the predicted set of fragments. I use a set of heuristics to explicitly re-construct a SQL

query whereas, we create a dictionary of key-value pairs to facilitate SQL borrowing

though a constant time lookup. Each distinct SQL query seen during training is

stored as an entry in the dictionary - the set of SQL fragments within the query

becomes the key and the query itself is stored as the value. Since there can be several

training queries containing the same SQL fragment set (key), I randomly pick one of

them and store it as the value to make the dictionary memory-efficient. Either SQL

reconstruction or borrowing is applicable to collaborative filtering-based recommender

systems, Historical RNNs and Q-Learning. However, in the case of synthesis-based

RNNs, borrowing a training query may not always work because, RNN-Synth can

predict SQL fragments which correspond to unseen SQL queries which are absent

from the training sessions. Therefore, if I use SQL borrowing for RNN-Synth, I first

check if the set of predicted fragments is in the dictionary key list. If I find a matching

key, I return the corresponding value from the dictionary entry as the predicted SQL

query; otherwise, I fall back to query reconstruction. This problem does not arise

with other ML approaches as all of them predict SQL fragments entirely out of the

query vocabulary created from training sessions.

136

Following are the steps I follow for query reconstruction based on the predicted

SQL fragments.

• Each SQL query is created by stitching together the predicted SQL fragments

in the following order - query (DML) type, projected columns, tables, selection

predicates, join predicates, group by and order by predicates. FROM and

WHERE keywords are appropriately added in between. I always use AND to

create a conjunction of multiple selection (or join) predicates.

• While adding a projection column to the query, I check if the column is present in

the group by list. If so, I add the column as it is to the projected columns without

any further checks. Otherwise, I check if the projected column is associated with

an aggregate operator such as MIN, MAX, SUM, COUNT, AVG and accordingly

project the column with (or without) its aggregate operator in the reconstructed

SQL query.

• While creating join predicates within the SQL query, I include the left table,

right table, left column and the right column based on the predicted fragments.

As for the arithmetic operator between the left and right columns, I always

include the “=” operator as we do not explicitly predict the arithmetic operator

for join predicates.

• The inclusion of the group by columns, order by columns, selection predicate

columns and the arithmetic operators for selection predicates within the SQL

query is straightforward as it involves copying the predicted fragments into the

reconstructed SQL query.

As mentioned in Section 5.5.2, I represent the constants of all data types in selection

predicates as 10 equi-depth range bins for each column and an additional “NULL”

bin to accommodate IS (NOT) NULL clauses and out-of-range constants. Therefore,

137

I apply the following heuristics in the same order to infer the selection predicates

from the predicted bins. The rationale behind these heuristics is aimed at enhancing

the recall without losing upon precision. Also, I do not include HAVING and LIMIT

clauses in query reconstruction, but the inclusion of constants within those clauses

can follow similar steps.

1. If a “NULL” bin is predicted, I include an “IS NOT NULL” or “IS NULL”

predicate respectively into the query depending on whether the arithmetic

operator is 6= or something else.

2. If the lower and upper bounds in the predicted bin are the same (possible for

equi-depth range bins and also in cases where #distinct column values < 10), I

create the selection predicate from column name (ATTR), arithmetic operator

(OP) and the bound (LOWER/UPPER).

3. If the arithmetic operator (OP) is “=”, I create a conjunctive predicate as ATTR

≥ LOWER AND ATTR ≤ UPPER where LOWER and UPPER refer to the

respective bounds in the bin.

4. If OP is ≤ or <, I create the predicate as ATTR OP UPPER.

5. If OP is ≥ or >, I create the predicate as ATTR OP LOWER.

6. If OP is 6=, I include a disjunctive predicate as ATTR ≤ LOWER OR ATTR ≥

UPPER.

7. If OP is ‘LIKE’, I include a disjunctive predicate as ATTR OP LOWER OR

ATTR OP UPPER.

138

5.7.3.2 Query Result Evaluation

Figure 44 compares the results of the queries predicted by each of the ML algorithms

w.r.t. the actual next queries upon the Course Website dataset. Following are the

steps to compute the test F1-score.

• I compute the column F1-score referred to as F1(Col) based on the overlap

between the columns projected in the result set of the actual and predicted

query.

• I compute the tuple F1-score also called F1(Tup), based on the tuples that

overlap between the predicted and actual query results only w.r.t. the matching

columns.

• I compute the total F1-score or F1(Tot) as α× F1(Col) + (1− α)× F1(Tup). I

set α to 0.2 in my experiments to give a higher weightage to F1(Tup). I present

all the three F1-scores in most of the figures.

I also consider the following steps to handle special cases.

1. If the predicted query is not of valid SQL syntax and cannot be executed, the

F1-score is 0.

2. If only one of the predicted and the actual queries returns an empty result, the

F1-score is 0.

3. If both the predicted and the actual queries return empty results, F1(Col) is

still computed based on the overlapping set of columns. If F1(Col) is non-zero,

F1(Tup) is 1.0 and F1(Tot) is computed as their weighted average. If the

matching columns are empty, F1(Tot) is 0.

139

Q-Learn RNN-S CF-SVD CF-Cos RNN-H0.0

0.2

0.4

0.6

0.8

1.0

Query Execution - Avg F1-Scores
 (Course Website)

F1(Tot) F1(Tup) F1(Col)

(a) Avg Test F1-Score (Bor-
row)

Q-Learn RNN-S CF-SVD CF-Cos RNN-H0.0

0.2

0.4

0.6

0.8

1.0

Query Execution - Borrow vs. Reconstruct
 (Course Website)

F1(Borrow) F1(Reconstruct)

(b) Borrow vs. Reconstruct

Q-Learn RNN-S CF-SVD CF-Cos RNN-H0.0

0.2

0.4

0.6

0.8

1.0

Query Execution - Top-3 vs. Top-1
 (Course Website)

F1(Top-3) F1(Top-1)

(c) Top-3 vs. Top-1

Figure 44: Predicted Query vs. Next Query w.r.t. Execution Result Tuples (80%
Train, 20% Test)

As mentioned in Section 5.7.3.1, I create the predicted SQL query from the

fragments in one of two ways - query borrowing or query reconstruction. Figure 44b

reports a comparison between the total F1-scores, F1(Tot), obtained from borrowing

a query and reconstructing a query. We can notice that borrowing outperforms

reconstruction and this is evident from the fact that query reconstruction cannot

obtain the exact constants in the selection predicates. However, surprisingly enough,

Q-learning and RNN-Synth achieve high F1-scores of 0.86 and 0.72 from query

borrowing. Also, we can notice that the relative performance among the ML algorithms

is consistent across both borrowing and reconstruction. I report the breakdown of the

total F1-scores in Figure 44a, and I find that F1(Col) ≥ F1(Tup) and the fact that I

give more weightage to F1(Tup) makes our reported F1(Tot) an under-estimate. In

Figures 44a and 44b, I report the F1-scores over the Top-3 predicted queries. However,

it is likely that a few applications may choose to speculatively execute only the Top-1

predicted query and cache its results. Therefore, I compare the test F1-scores obtained

from Top-3 predictions against those from Top-1 prediction, and I can notice from

Figure 44c, that Top-1 performs slightly worse as compared to Top-3 in the case

140

of both Q-Learning and RNN. In the case of SVD based collaborative filtering, the

difference is significantly high.

141

Chapter 6

BI-REC: GUIDED DATA ANALYSIS FOR CONVERSATIONAL BUSINESS

INTELLIGENCE

In this chapter, I will propose a recommender system for Business Intelligence

(BI) queries called BI-REC (research problem Q4). In Sections 2.1.1.1 and 2.2.3 in

Chapter 2, I have motivated the need for conversational recommendations which should

be given explicitly to the user unlike SQL prediction where the query recommendation

is implicit via query result prefetching.

6.1 Preliminaries

In this section, I will briefly describe a conversational BI system introduced in

an existing work [116] on the top of which I build BI-REC. Next, I will provide an

overview of how I model prior user interactions in BI-REC.

6.1.1 A Conversational BI System

The conversational BI system introduced in Quamar et al. [116] provides a natural

language interface to help users analyze a healthcare insurance dataset (described

in Section 6.5) referred to as Healthcare Insights (HI). Conversational logs of user

interactions with a deployed instance of this system are used as input by BI-REC.

Quamar et al. [116] exploit the OLAP cube definition to learn a semantically rich

entity-centric view of the underlying BI schema called the Semantic Abstraction Layer

142

(SAL). They use the semantic information in SAL to bootstrap the conversation

system with the relevant entities and relationships. They also identify the common

access patterns for BI analysis, and use them to interpret the user’s utterance and

generate structured SQL queries against the database. In the following subsections, I

will shortly describe the semantic abstraction layer, and the BI patterns, as I make

use of the SAL and the BI patterns heavily in BI-REC.

6.1.2 Semantic Abstraction Layer (SAL)

Quamar et al. [116] exploit an existing OLAP cube definition against HI to learn

a semantically rich Semantic Abstraction Layer in the form of an ontology, called BI

Ontology. The BI ontology provides an entity-centric view of the BI schema in terms

of quantifiable entities called Measures, categorical attributes called Dimensions, their

hierarchies and relationships as defined in the OLAP cube definition. Each measure

and dimension described in the OLAP cube definition is represented as a class in

the BI ontology and annotated as an actual measure/dimension. The measure and

dimension hierarchies captured from the OLAP cube definition are represented as

functional relationships in the BI ontology. For example, in a dimensional hierarchy

for time, each of the time dimensions such as year, month, week, and day would be

connected using directed edges representing functional relationships between the time

dimensions.

The BI ontology is further augmented with higher-level logical grouping of measures,

called Measure Groups (MGs), and of dimensions, called Dimension Groups (DGs).

This grouping is provided by subject matter experts (SMEs), to enable the HI system

better understand the analysis task and the dataset. This facilitates navigation

143

Figure 45: BI ontology: measure and dimension grouping.

to relevant portions of the underlying BI schema to determine the measures and

dimensions that are relevant to the analysis task. Figure 45 shows one possible

grouping of measures and dimensions in the augmented BI ontology. In Figure 45,

Net Pay Admit is an actual measure defined in the OLAP cube over the underlying

data, and that Net Payment is a logical grouping provided by SMEs.

Each logical grouping of measures and dimensions provided by the SMEs is also

represented as a class and is annotated as a measure/dimension group respectively in

the BI ontology. Measure and dimensions are grouped into groups using is-A (parent-

child) relationships in the BI ontology. Note that some real-world applications and

datasets may not have these higher-level logical groupings of measures and dimensions

in terms of measure/dimension groups. BI-REC uses the measure and dimension

groups, if they are available, otherwise it uses the original BI ontology derived from

the OLAP cube definition.

144

6.1.3 Modeling BI Patterns

In Quamar et al. [116], user utterances are characterized by well-structured BI

Patterns that are commonly used for BI analysis. The constituent elements of each

BI pattern are discerned from the natural language queries using a trained classifier

and NLP techniques such as Named Entity Recognition (NER) employed by the

conversational interface.

A BI Pattern (PBI) is defined as a quadruple (Equation 6.1) consisting of (1) opBI ,

a BI-specific operation from a set of operations OPBI = {ANALYSIS, DRILL-DOWN,

ROLL-UP, PIVOT, TREND, RANKING, COMPARISON}, (2) M , a set of measures (or mea-

sure groups) defined in the BI ontology, (3) D, a set of dimensions (or dimension

groups) defined in the BI ontology and (4) OQuery, a set of query operations such as

AGGREGATION on measures, GROUP BY and FILTER on dimensions.

PBI =< opBI ,M,D,OQuery > (6.1)

where opBI ∈ OPBI . I provide an example BI pattern below and refer the reader

to Quamar et al. [116] for further details.

Figure 46: BI comparison pattern.

145

A common BI pattern observed is the BI comparison pattern which allows users

to compare two or more measures against each other along a particular dimension

and optionally with a filter value. Figure 46 shows an example BI comparison pattern

that compares the number of admits to discharges by hospital (dimension) for the

year 2017 (a filter value). The pattern can be represented as the quadruple: PBI =

<COMPARISON, {Admits, Discharges}, {Hospital}, {COUNT, YEAR=2017}>

6.1.4 Modeling Prior User Interactions for BI-REC

Conversational logs that capture prior user interactions against a data set are a rich

source of information. Analysis of these logs enables extraction of useful data analysis

patterns. BI-REC leverages data analysis patterns extracted from conversational logs

to make query recommendations for the current user interaction. Here, I describe how

I model these prior user interactions in BI-REC and provide definitions for the key

terms and concepts used in this thesis proposal.

Prior user interactions are characterized by a sequence of NL queries issued by the

user and corresponding responses provided by the system across several conversational

turns1. I capture the conversational logs of prior user interactions in terms of the

following:

A query is the natural language question/utterance issued by the user at a given

state of data analysis2. Each query is interpreted as a BI pattern PBI , along with its

constituent elements defined in Section 6.1.2. Further, each PBI is translated into a

1A conversational turn is a pair consisting of a user utterance (or query) and the system response
to the user utterance.

2I use the term data analysis state and state interchangeably in the thesis proposal.

146

SQL query called BI Query, issued against the database to retrieve the results for the

user query.

A state (S) represents the context of data analysis in terms of (1) the BI pattern

PBI , including its constituent elements extracted from the query issued by the user,

(2) the measure group the user is interested in, and (3) the elements from the BI

Ontology that are relevant to PBI , allowing for flexibility in making recommendations

in terms of unseen but similar queries.

A user session (US) is a sequence of states capturing the analysis done by the

user in a single sitting. I model US as a simple linear graph, wherein each node in

the graph represents a state. Each directed edge between two states (a source state

and a target state) represents a query issued by the user at the source state to reach

the target state. The first and the last states in each user session are termed Initial

State and Final State, respectively.

S1

opBI: ANALYSIS
Query: Show Acute
Admits by Plan

S2 S3

opBI: PIVOT
Query: Show Acute
Admits by Condition

S4

opBI:TREND
Query: Show AVG (Acute Admits) by
Month for incurred year = 2016

Initial State Final State

Figure 47: A user session example.

Figure 47 shows an example data analysis user session obtained from the HI

conversational logs. The session is represented as a sequence of four states and three

queries representing a user’s transition from an initial state of data analysis S1, to a

final state of data analysis S4. For each natural language query issued by the user at

a particular state, the system identifies PBI associated with the query and extracts

all the relevant features required for populating the state including the opBI (e.g.,

147

ANALYSIS, PIVOT, TREND), measure (e.g., Acute Admits), dimensions (e.g., Plan,

Condition, Month) and filters (e.g., Incurred Year = 2016) as shown in Figure 47.

In addition to the feature extraction for each state, I also annotate each user session

USk, with a session task TaskUSk
. TaskUSk

represents the semantically higher-level

information that the user is interested in analyzing in the session. BI analysis is

typically characterized by users looking at a specific measure(s) which they slice and

dice along several dimensions and their hierarchies using different operations opBI

to gain useful insights. For example, Acute Admits is the queried measure for states

S2, S3 and S4, as shown in Figure 47 and is the most representative of the analysis

task that the user is interested in. I therefore define the session task in terms of the

measures queried in the different states of the session.

More specifically, I define TaskUSk
as the union of the parent of each measure (is-A

relationship) being investigated in the session (Equation 6.2). I chose the session task

to be the immediate parent of the measures being investigated in the session. This

affords an appropriate balance between (a) Generalization: providing an intuition

of the semantically higher-level information that the user is looking for, and (b)

Specialization: being specific enough to the measure(s) that the user is interested in

analyzing.

TaskUSk
=

n⋃
i=1

Parent(mSi
) (6.2)

For example, Utilization is the parent of Acute Admits and defined as a Measure

Group (MG), a logical grouping provided by the SMEs in the BI ontology. Hence, it

is the session task signifying that the user is interested in analyzing the utilization

of health care resources in terms of the admits for acute conditions in the current

session. The function Parent(mSi
) returns the immediate MG associated with mSi

148

if it exists in the BI ontology. If not, it returns the measure mSi
itself3. The session

level task in this case would thus degenerate to the union of all measures explored by

the user in the session.

6.1.5 Problem Definition for Conversational BI Recommendation

I define the problem of conversational BI recommendations as follows:

Definition 1 Given a conversational log of prior user sessions against a dataset and

a BI ontology derived from the cube definition against this dataset, provide top-k BI

pattern (PBI) recommendations at each state to help the user achieve his/her current

analysis goal.

6.2 System Overview of BI-REC

This section provides an overview of the architecture of BI-REC. It consists of

(1) an offline State Representation Learning phase that trains a model to learn a low-

dimensional vector representation of each state in a user session and (2) an online BI

Pattern Recommendation phase which takes the latent vector representation of a state

(created by the trained model) from a current user session as input and provides the

top-k BI pattern recommendations at that particular state of data analysis. Figure 48

shows the two phases of BI-REC ’s architecture.

In the offline phase, the model for creating the state representation is trained using

3This could be either because there exists no Parent(mSi) in the cube definition or it is not
provided by the SMEs.

149

State Representation

Conversational Logs
BI Ontology

State Graph Generator

Directed State
Graph

Network Representation: Graph Neural Networks

State Graph Embedding

Pretrained BERT Model

Node
Labels

Input Feature
Vectors

BI Pattern Recommendation

State Graph Embedding

BI Pattern Predictor

BI Intent Predictor
(Multi-Class Classification)

Top-k BI Intents
BI Pattern Predictor

(Collaborative Filtering)

Top-k BI Pattern Recommendations

Figure 48: BI-REC architecture.

prior user sessions in the conversational logs enriched by the semantic information

captured in the BI ontology.

First, for each state in a user session, the state graph generator creates a directed

graph that captures the state information learned from the conversational logs in terms

of the BI pattern and its constituent elements. The graph is then further enriched with

the session-level analysis task TaskUSk
and additional semantic information relevant

to the entities in the state graph from the BI ontology. The enriched representation

of the state allows BI-REC to recommend BI patterns similar to the states that are

seen in the query logs, but also unseen states which are semantically “close” to the

user’s current analysis state

The next step is network representation learning for generating the state the graph

embeddings A pre-trained language model (BERT) [38] is used to generate fixed-

length feature vectors for each node in the state graph using their node labels. The

feature vectors (initial node embeddings) are provided as input along with the directed

state graph to train a model using GraphSAGE [58], an inductive representation

150

learning framework for graphs. The model captures each state Si in the form of a

low-dimensional vector (i.e., state graph embedding) ESi
. This embedding provides a

compact representation of features from both the conversational logs as well as the

semantic knowledge from the BI Ontology and preserves the structural relationships

between the different entities in the state graph.

The online phase of BI Pattern prediction (Figure 48) generates the top-k BI

pattern recommendations at each step of an active user session. The search space of

BI pattern recommendation (Equation 6.3) is huge, being the Cartesian product of

the possible BI operations OPBI , measures M , dimensions D, as defined in the OLAP

cube definition, and operations OQuery on measures (AGGREGATION) and dimensions

(GROUP BY or Filter).

S = OPBI ×M ×D ×OQuery (6.3)

To divide and conquer this huge search space, BI-REC takes a two-step approach

that obviates the need for prediction of the entire BI pattern in one shot. The first

step takes the graph embedding of the current state in an active data analysis session

as input and predicts a coarse-grained high-level action called BI Intent (IntentBI)

using a trained multi-class classifier model. Each predicted BI Intent IntentBI , is

defined as a tuple (Equation 6.4) consisting of the next BI operation opBI ∈ OPBI

(e.g., DRILL-DOWN, ROLL-UP, PIVOT, etc.), and a MG ∈ TaskUSk
(e.g., Utilization, Net

Payment) that the user is interested in the current session.

IntentBI = 〈opBI ,MG〉 (6.4)

Predicting the next data analysis step in terms of an IntentBI helps to significantly

narrow down the search space. As seen from Equation 6.5, the search space for

IntentBI prediction SIntentBI
, is the Cartesian product of the number of BI operations

151

OPBI and the distinct number of session tasks Tasksession, which is orders of magnitude

smaller than the search space S for BI pattern prediction. This allows BI-REC to

train a highly accurate prediction model with a small amount of labeled training data

that is usually expensive to obtain.

SIntentBI
= OPBI × TaskUS (6.5)

The second step refines the IntentBI into a more detailed BI pattern PBI , with

all its constituent elements using a novel index-based collaborative filtering approach

(CFIndex). Using the novel CFIndex approach gives BI-REC the distinct advantage of

producing predictions with an accuracy almost equivalent to an exhaustive collabora-

tive filtering approach while providing significant improvement in terms of lowering

prediction latency, a critical requirement for real-time interactions in conversational

BI systems. Finally, these top-k BI pattern predictions are further refined by a

post-processing step to enhance the quality and richness of the recommendations.

6.3 State Representation

I propose a novel graph-structured representation of each state that allows us to

meaningfully combine features from the conversational logs as well as the relevant

semantic information from the BI ontology, while preserving the structural relationships

between all the entities from both sources.

6.3.1 Graph-Structured State Representation

I start with the information contained in each state as extracted from the user

sessions in the conversational logs. This information includes the BI pattern PBI

152

observed for the state Si in a prior user session USk, including the BI operation opBISi
,

measures mSi
∈M , dimensions dSi

∈ D, and query operations OSi
on these entities.

I enrich the state information with features extracted from the BI ontology that

are semantically relevant to mSi
, dSi

. I call these features the Ontology Neighborhood

ON Si
(Equation 6.8) relevant to the state Si. Specifically, ON Si

consists of the session

task TaskUSk
(Equation 6.2), where Si ∈ USk, Expanded Measures EMSi

, which are

sibling measures, i.e., children of the measure groups MG ∈ TaskUSk
, and Expanded

Dimensions EDSi
, which are dimensions connected to m ∈ EMSi

in the BI ontology

via an edge e ∈ E.

EMSi
= {m ∈M |m = Sibling(mSi

)}, (6.6)

EDSi
= {d ∈ D|m ∈ EMSi

, (m, d) ∈ E}, (6.7)

ONSi
= TaskUSk

∪ EMSi
∪ EDSi

. (6.8)

Figure 49 shows the state graph representation that is created for each state wherein

nodes represent the extracted state features, and edges represent the relationships

between them. The edges are directed to represent the structural dependency of

the features within the state. For instance, nodes representing AGGREGATIONs are

connected to associated measures and FILTERs are connected to the dimensions on

which they are applied. Each of the nodes representing the opBI , measures mSi
,

dimensions dSi
is also connected with an edge to the BI Pattern node that together

provide a structured representation of the query issued by the user. For the nodes

representing the ontology neighborhood ONSi , the directed edges between measures

and measure groups, dimensions and dimension groups denote hierarchical (is-A)

relationships. Edges between expanded measures EMSi and expanded dimensions

EDSi represent functional relationships. The graph also has a root node that is

artificially introduced and connected via separate edges to the BI pattern and measure

153

group nodes allowing the integration of state information extracted from the logs with

the ontology neighborhood ONSi . The root node is associated with one attribute, the

session task TaskUSk
extracted from the BI ontology.

RootBI PatternOPBI

Measure(s)

Dimension(s)
Measure
Group(s)

M1

M2

M3

D1

D2

DN

Aggregation(s)

Expanded
Measures

Expanded
Dimensions

Session
Task

Filter(s)

…
MG(s)

Figure 49: Graph-structured state representation.

6.3.2 Representation Learning on State Graphs

I use GraphSAGE [57], an inductive4 graph representation learning framework,

in conjunction with an unsupervised loss function that I propose, to create a low-

dimensional vector representation of the state graphs in the form of graph embeddings

that succinctly capture both the structure (global information) and node features

(local information) of the elements across the entire state graph. Figure 50 shows

the end-to-end state graph representation learning process using GraphSAGE for

generating state graph embeddings.

4The inductive setting allows us to compute the graph embeddings of new states seen in active user
sessions which are then used as input to downstream prediction models for making recommendations.

154

BERT
Embeddings

R
o
o

t

B I P a tte rn

O
P
B
I

M e a su re (s)

D im e n sio n (s)

M
G

M
1

M
2

M
3

D
1

D
2

D
N

A g g re g a tio n (s)

S e ssio n
T a sk

F ilte r(s)

State Graph

Feature Vectors of
Nodes in State Graph

Output Node
Embeddings

State Graph
Embedding

GraphSAGE Layers

Pooling

Figure 50: State graph representation learning.

6.3.2.1 State Graph Embedding Generation

GraphSAGE takes as input a state graph and a set input feature vectors for the

nodes in the graph. I use a pre-trained language model (e.g., BERT [38]) to generate

semantically rich node embeddings as input features corresponding to the names of the

nodes (node labels) in the state graph5 (Figure 49). The embedding generation process

involves aggregation of local neighborhood information over several GraphSAGE layers.

In each iteration, every node ν first aggregates the node features from its immediate

neighbors recursively into a single aggregated feature vector hkN (v) (Equation 6.9) and

then concatenates its current feature vector hk−1v with the aggregated feature vector

hkN (v). There are several choices of aggregation operations (MEAN/LSTM/MaxPool)

for aggregating neighborhood features. In my current implementation I use MEAN as

the aggregator function, following the empirical observation from Hamilton, Ying, and

Leskovec [57]. This concatenated feature vector is then fed through a fully connected

5Node labels represent the names of the measures, dimensions, their hierarchies, opBI , query
operations OSi

that the nodes in the state graph represent.

155

network with a non-linearity σ (I use ReLU in my implementation) to finally produce

hkv (Equation 6.10) that is then fed to the next layer as input.

hkN (v) = AGGREGATE(hk−1u , ∀u ∈ N (v)) (6.9)

hkv = σ(Wk · CONCAT(hk−1v ,hkN (v)) (6.10)

After k-layers6, I pool the node embeddings of all the nodes in the state graph to

create the state graph embeddings.

6.3.2.2 Representation Network Model Training

To generate training data, I randomly sample pairs of states from the training

set of user sessions and devise an unsupervised loss function (Equation 6.11) that

minimizes the difference between the graph similarity of the pairs of states in the

original space and the latent similarity (i.e., Cosine Similarity) in the vector space.

The loss is then back propagated from the output layer to train GraphSAGE. I

optimize the model weights by minimizing the following loss function:

min
∑

i,j∈Pairs

|Sim(Si, Sj)− CosineSim(Vi, Vj)|, (6.11)

Sim(Si, Sj) =AVG(JaccSim(msi ,msj), JaccSim(opBISi
, opBISj

),

JaccSim(dSi
, dSj

), JaccSim(ONSi
, ONSj

))

(6.12)

where i and j denote indices of the states Si and Sj in a randomly drawn matching

(positive sample) or non-matching (negative sample) state pair from the Cartesian

product of state pairs, denoted by “Pairs”. Vi and Vj denote the latent vectors (i.e.,

6I set k to 4 to propagate and aggregate features from all nodes into the root node.

156

graph embeddings) of Si and Sj, respectively. For graph similarity in the original

space, I propose a Jaccard-based graph similarity function Sim(Si, Sj) (Equation 6.12)

which treats individual components of the graph as sets7. The objective function

in Equation 6.11 minimizes the cumulative difference between the Jaccard-based

similarity and the cosine similarity over all such pairs selected in the training set.

6.4 BI Pattern Prediction

In the online phase of BI-REC, I introduce a novel two-step approach shown in

Figure 51 to divide and conquer the huge search space of predicting the next BI pattern

in a current user session. This two-step approach first predicts an IntentBI which has

a much smaller search space for prediction (Equation 6.5). This enables BI-REC to

train and employ a highly accurate model with a small amount of training data for

IntentBI prediction. Subsequently, the IntentBI is expanded into a PBI with all its

constituent elements using an efficient index-based collaborative filtering approach,

CFIndex , that I have designed to provide the top-k BI pattern PBI recommendations

in real-time.

Top-k BI intent prediction. I model the IntentBI prediction as a multi-class

classification problem that takes the current state graph embedding ESi
as input

and provides the top-k IntentBI s as output (Figure 48). I trained and employed a

Random Forest (RF) classifier as an IntentBI predictor. The RF classifier is trained

using labeled examples of 〈ESi
, IntentBI 〉 pairs drawn from the conversational logs

7While alternative set similarity or graph edit-distance based similarity metrics can be used to
compute the graph similarity, I have empirically observed a competent accuracy of around 88% for
state representation in Section 6.5.5.1 using Jaccard similarity.

157

State Graph
Embedding

Top-K BI Intents

BI Intent
Predictor

Roll-up, Utilization

Pivot, Utilization

Compare, Allowed Amt

BI
Pattern

Predictor

Top-K BI
Pattern
Predictions

Step 2

Current
State

S1

BI Analysis
Show Acute
Admits by Plan

S2 S3

BI Pivot
Show Acute Admits
by Condition

Current
Session

Initial
State

State
Graph
Embedding

Top-K BI Intents

BI Intent
Predictor

Roll-up, Utilization

Pivot, Utilization

Compare, Allowed Amt

Step 1

Figure 51: Two-step approach for BI query prediction.

and a sparse categorical cross-entropy loss function. Each IntentBI represents a

distinct class for which the RF classifier emits a probability score upon each input

test embedding during the prediction phase. BI-REC then chooses the top-k most

likely IntentBI s based on the probability scores. In addition to the RF classifier, I also

implemented alternative multi-class classifier models for predicting the top-k IntentBI s.

These include an LSTM classifier, a hybrid RF+LSTM classifier and a reinforcement

learning-based DDQN [62]. My experimental evaluation in Section 6.5 shows that the

simpler RF classifier is highly efficient, and provides better or comparable accuracy to

the other models for IntentBI prediction with a small number of training examples.

Top-k BI pattern prediction. I adapt the Collaborative Filtering (CF) model

for making BI pattern PBI prediction by modeling each session as a vector of states

and computing session similarities between current and prior sessions to recommend

the next PBI .

158

State
Graph
Embedding

BI Intent
Predictor

Top-K BI Intents

Roll-up, Utilization

Pivot, Allowed Amt

Compare, Net Payment

Task Index
Task List of Sessions
Utilization Sess9, Sess8, Sess30
Allowed Amount Sess2, Sess5, Sess34,

Sess65
Submitted Charges ……
Net Payment ………
Member Enrollment ……..
Employee Enrollment ……
………. …….

Figure 52: Finding relevant sessions using CFIndex.

I designed an efficient index-based CF approach CFIndex, a variant of the memory-

based CF algorithms, for making the top-k PBI predictions8. I build a Task Index that

groups together sessions based on the task, i.e., the Measure Groups MG ∈ TaskUSk
.

The index allows the system to retain the space of prior user sessions whose states

need to be compared with the current state to make the PBI prediction, and detects

such relevant sessions in O(1) time.

Having identified the prior user sessions relevant to the MG predicted in the

IntentBI , the next step is to find the most similar state within these identified sessions

to make the PBI prediction.

Figure 53 shows an example current session with a current state S3. The BI Intent

predictor predicts <ROLL-UP, Utilization> as one of the top-k IntentBIs. The system

utilizes the task index to get a set of selected sessions relevant to the MG Utilization.

The figure shows one example of a selected session with Utilization as the MG in

its session task. Within this session, the CF approach finds the most similar <state,

opBI> transition. The most similar state to the current state S3 is T7, and the opBI
8Memory-based CF algorithms are not scalable as they tend to be computationally exhaustive

and can potentially end up computing the similarities between the current state and the states among
the entire set of prior user sessions.

159

Current
State

S1

BI Analysis
Show Acute
Admits by Plan

S2 S3

BI Pivot
Show Acute Admits
by Condition

Current
Session

Initial
State

T1 …………
……

T7 T8Selected
Session
(MG:
Utilization)

Matching transition: Similarity
between predicted and actual BI
Intent in selected session

State similarity
(Embedding based
Cosine Similarity)

op_BI:
Roll-up

BI Pattern
Recom-
mendation

Predicted BI Intent:
Roll-up, Utilization

Figure 53: Index-based CF for BI pattern prediction.

is ROLL-UP in the predicted BI Intent as well as the transition from state T7 to T8 in

the selected session. The state T8 is therefore now used to make the PBI prediction.

Equation 6.13 provides a weighted function for computing the <state, opBI>

transition similarity based on the state and opBI similarities. I use the cosine similarity

between the state graph embeddings ESi
of both these states to compute state similarity

Simstate . SimopBI
is based on exact match. In my implementation, I set ws to 0.5 to

provide equal weight to state and opBI similarities, which has empirically been verified

to provide the most accurate results.

Sim<state,opBI> = ws ∗ Simstate + (1− ws) ∗ SimopBI
(6.13)

160

6.5 Experimental Evaluation

6.5.1 Dataset and Workloads

6.5.1.1 Datasets

I use two datasets from different domains, the HealthInsights (HI) dataset from

the healthcare domain and the GoSales dataset from the finance domain. The HI

dataset consists of healthcare insurance data related to claims and transactions from

a population covered by insurance’s healthcare plans including participants’ drug

prescriptions, admissions, services, as well as anonymized electronic medical records.

The GoSales dataset contains sales data corresponding to sales of different products

made by employees across different departments, regions and time periods.

The BI ontology corresponding to the HI dataset contains 64 measures, 229

dimensions, 12 measure groups, and 13 dimension groups created by SMEs. I also

augment the ontology to create an Augmented Healthcare Insights (AHI) dataset

with 265 additional synthetic measures and 48 additional measure groups to enable

studying the effect of different distributions of the number of sessions per Measure

Group (MG)9 on BI-REC ’s recommendation quality and performance. The BI ontology

corresponding to the GoSales dataset has 45 dimension groups, 156 dimensions, 3

measure groups, 26 measures along with 177 additional synthetic measure groups and

998 synthetic measures.

9The number of sessions containing the Measure Group in their session task.

161

6.5.1.2 Workloads

I choose one real workload against the HI dataset, 12 synthetic workloads against

both HI and AHI datasets and 20 synthetic workloads against the GoSales dataset.

Each workload on the HI and AHI dataset consists of 125 user sessions, whereas each

GoSales workload contains 225 user sessions, wherein the average user session length

ranged from 5 to 8 queries.

Healthcare Insights workload (HIW) is a real workload collected from the

logs of conversational interaction over the course of one month with a mix of technical

and non-technical business users. The user interactions were recorded as sessions

wherein each user was assigned 5 different tasks in terms of MGs such as utilization of

healthcare resources (Utilization), cost incurred by insurance (Net Payment), etc. Each

user session consisted of multiple turns of conversation with users issuing separate

analysis queries. The responses to user queries were displayed as charts and the users

terminated a session when the assigned task was complete.

Synthetic workloads I validate my system performance upon a variety of syn-

thetic workloads that broadly differ in terms of (1) the distribution of the transition

probabilities between different opBI observed in a user data analysis session and (2) the

distribution of MGs (e.g., Utilization, Net Payment, etc.) in the session tasks of user

sessions. For example, a uniform distribution would evenly distribute the number of

user sessions containing a particular MG in their session task across different MGs, as

opposed to an exponential distribution wherein a few MGs would have a much higher

number of user sessions compared to others. Tables 8 and 9 provide the statistics of

these two kinds of synthetic workloads.

162

Workload Distribution Parameters
BT-Exp Exponential mean=0.5

BT-Gamma Gamma shape =1, scale=1
BT-Uniform Uniform value ∈ [0.0, 1.0]
BT-Normal Normal mean=0, stddev=1

Table 8: Synthetic workloads based on the distribution of opBI transition probability
(HI & GoSales).

Workload Distribution #Sessions per MG [Min, Max]
HI AHI GoSales

ST-Exp Exponential [3,20] [1,8] [2,8]
ST-Gamma Gamma [3,27] [1,9] [2,5]
ST-Uniform Uniform [10,11] [2,3] [2,3]
ST-Normal Normal [3,13] [1,5] [2,5]

Table 9: Synthetic workloads based on the distribution of # user sessions per MG
(HI, AHI & GoSales).

6.5.2 Experimental Setup and Methodology

6.5.2.1 Settings and Configuration

I conducted my experiments on a machine with 2.3 GHz 8-Core Intel Core i9

processor and 64GB RAM running Mac OS. I implemented BI-REC using Python

3.7.8. I used PyTorch as the deep learning platform with different libraries for

the implementation of GNN [39] and LSTM [129]. I used scikit-learn for random

forests [118].

6.5.2.2 Evaluation Metrics and Methodology

I used 5-fold cross-validation to evaluate the components of BI-REC. I used 662

queries across 100 training sessions and 140 queries across 25 test sessions for workloads

on HI and AHI datasets. I used 180 training sessions with 1,188 queries and 45 test

sessions containing 297 queries on the GoSales dataset. For the evaluation of state

163

representation, I report F1-score, root mean square error (RMSE), and accuracy.

To evaluate IntentBI prediction, I report the F1-score [43] w.r.t. the expected and

predicted BI intents. For PBI predictions, in addition to F1-scores, I also report

Diversity, Surprisingness and Normalized Discounted Cumulative Gain (nDCG) of

the recommendations as compared to a baseline which I describe next. Following [68],

I define Diversity as the average pairwise Jaccard distance among the top-k PBI

predictions and Surprisingness as the average Jaccard distance over each of the top-k

PBI predictions from the PBI discerned from the current user issued query. nDCG [158]

is a standard metric of ranking quality and is often used to evaluate the effectiveness

of recommendation algorithms. It produces a score in the range [0,1], 1 being the

best.

Following is how I define precision and recall between the expected (PBI,exp) and

predicted (PBI,pred) BI patterns, similarly to Eirinaki et al. [43].

Precision(PBI,exp, PBI,pred) =
|PBI,exp ∩ PBI,pred|
|PBI,pred|

(6.14)

Recall(PBI,exp, PBI,pred) =
|PBI,exp ∩ PBI,pred|

|PBI,exp|
(6.15)

F1(PBI,exp, PBI,pred) = HarmonicMean(Precision,Recall) (6.16)

Following are the definitions of diversity and surprisingness for the predicted set,

Spred, of BI patterns, given the BI pattern PBI,cur from the current user-issued BI

query. Sim(Pi, Pj) refers to the Jaccard similarity between the BI patterns Pi and Pj .

Thus, (1.0 - Sim(Pi, Pj)) indicates Jaccard distance.

Diversity(Spred) =

∑
Pi∈Spred

∑
Pj∈Spred\Pi

(1.0− Sim(Pi, Pj))

|Spred| × (|Spred| − 1)
(6.17)

164

Surprisingness(Spred, PBI,cur) =

∑
Pi∈Spred

(1.0− Sim(Pi, PBI,cur))

|Spred|
(6.18)

6.5.2.3 Baselines

For an end-to-end comparison of BI-REC in terms of latency, quality (F1-score),

diversity, surprisingness and nDCG, I choose an exhaustive CF baseline [43] that

was originally developed for SQL query recommendation, by adapting it for PBI

recommendation. I chose [43] rather than a naïve CF approach, as the former uses

session summaries to find relevant sessions, instead of scanning all the prior user

sessions to find the most similar state to the current state. Additionally, for the

top-k IntentBI prediction, I trained and tested several multi-class classifiers, including

Random Forests (RFs), LSTMs, a hybrid RF+LSTM model, as well as a Reinforcement

Learning-based Double DQN model [62].

6.5.3 BI-REC System Evaluation

I evaluate the overall system performance of BI-REC upon the workloads described

in Section 6.5.1.2. In all experiments, I set k to 3 when predicting top-k BI patterns.

6.5.3.1 BI-REC Performance on Different Workloads

Table 10 shows the prediction quality of BI-REC upon one real HIW workload

and four synthetic GoSales workloads from Table 9.

165

Workload Original BT-Exp BT-Gamma BT-Uniform BT-Normal
HIW 0.83 0.77 0.75 0.73 0.75

GoSales (ST-Normal) 0.62 0.59 0.6 0.59 0.58
GoSales (ST-Uniform) 0.56 0.58 0.57 0.53 0.54

GoSales (ST-Exp) 0.68 0.6 0.61 0.59 0.62
GoSales (ST-Gamma) 0.65 0.58 0.62 0.58 0.6

Table 10: PBI prediction quality (5-Fold CV F1-score).

Dataset Workload Prediction F1 Prediction Latency (millisec)
BI-REC Baseline BI-REC (% gain) Baseline

HIW 0.83 0.82 230 (11.53%) 260
ST-Normal 0.91 0.92 140 (22.22%) 180

HI ST-Uniform 0.93 0.94 110 (35.29%) 170
ST-Exp 0.93 0.93 160 (20%) 200

ST-Gamma 0.93 0.93 180 (16.66%) 210
ST-Normal 0.76 0.75 70 (50%) 140
ST-Uniform 0.72 0.73 70 (46.15%) 130

AHI ST-Exp 0.77 0.76 90 (43.75%) 160
ST-Gamma 0.75 0.75 80 (42.86%) 140
ST-Normal 0.62 0.66 82 (62.21%) 217
ST-Uniform 0.56 0.61 76 (61.81%) 199

GoSales ST-Exp 0.68 0.70 71 (61.83%) 186
ST-Gamma 0.65 0.67 83 (62.27%) 220

Dataset Workload Diversity Surprisingness nDCG
BI-REC Baseline BI-REC (% gain) Baseline BI-REC Baseline

HIW 0.56 0.29 0.67 0.69 0.95 0.95
ST-Normal 0.54 0.14 0.69 0.71 0.99 0.99

HI ST-Uniform 0.57 0.13 0.7 0.72 0.98 0.99
ST-Exp 0.54 0.13 0.69 0.72 0.99 0.99

ST-Gamma 0.51 0.14 0.69 0.72 0.99 0.99
ST-Normal 0.64 0.31 0.84 0.76 0.97 0.99
ST-Uniform 0.68 0.35 0.84 0.77 0.97 0.99

AHI ST-Exp 0.64 0.28 0.86 0.78 0.97 0.99
ST-Gamma 0.67 0.29 0.81 0.75 0.97 0.99
ST-Normal 0.73 0.46 0.86 0.78 0.97 0.99
ST-Uniform 0.75 0.51 0.9 0.85 0.96 0.99

GoSales ST-Exp 0.73 0.42 0.87 0.8 0.97 0.99
ST-Gamma 0.74 0.44 0.87 0.8 0.97 0.99

Table 11: BI-REC vs. Exhaustive CF baseline (5-Fold Cross-Validation).

For each of these original workloads, the transition probabilities of opBI between

successive states in a user session were varied statistically to create four more (BT-)

workloads as discussed in Table 8. The F1-scores across different BT-distributions

are comparable to the original workload F1-scores. This highlights that BI-REC is

robust to the variations in the underlying transition distribution and can adapt to

different workloads. The original F1-scores are higher than those on the BT-workloads

166

because, the opBI transition probabilities in the former were borrowed from a user

study, wherein users were assigned a fixed set of MGs to investigate, and hence

were biased towards using a subset of the BI operations more prominently than the

others. Similarly, the HI ontology has fewer ontology concepts as compared to the

GoSales ontology. Hence, the HIW workload has more repetitions of measures and

dimensions across user sessions that leads to higher F1-scores as compared to those

on the GoSales workloads. However, the F1-scores of BI-REC are comparable to an

exhaustive baseline on both the datasets (see Table 11).

6.5.3.2 Exhaustive CF Baseline Comparison

Table 11 shows the detailed comparison of BI-REC with the exhaustive CF

baseline for different datasets. I see that the top-3 BI pattern prediction F1-score

as well as nDCG of BI-REC are comparable to that of the exhaustive CF baseline

for all workloads. BI-REC outperforms the baseline in terms of prediction latency

achieving approximately up to 2×-2.65× speedup across different workloads validating

the effectiveness of my two-step approach. In terms of prediction diversity, BI-REC

achieves up to 2-3× improvement as compared to the baseline. This could be attributed

to the enrichment of the state information with relevant semantic features from the

ontology neighborhood ON that enables making relevant but diverse predictions.

BI-REC also surpasses the baseline w.r.t. surprisingness for the AHI and GoSales

datasets in particular. The surprisingness scores are comparable for the HI dataset

which could be attributed to the smaller number of MGs in the dataset as compared

to AHI and GoSales. More results on the session filtering latency, comparisons and

167

efficacy of my CFIndex approach and offline pre-processing times are in a technical

report [14].

6.5.4 User Study

I conducted a detailed user study on the prototype implementation of BI-

REC against the HI dataset with 15 real-world users, including data scientists,

data analysts and non-technical business users, to ascertain the quality and usefulness

of the recommendations provided. The user study comprises of different session tasks

containing MGs such as utilization of healthcare resources (UTILIZATION), costs

covered by insurance (ALLOWED AMOUNT), net payments made by insurance

(NET PAYMENT), etc. Each such session task is associated with a user session,

wherein at each state in the session, the user issues a query to explore information

about the task and the system provides a response to the query along with its top-k

PBI recommendations for the next possible state.

TaskUS1 TaskUS2 TaskUS3

Precision@3 88.9% 97.93% 88.9%
MRR 0.72 0.46 0.69

Table 12: User study results.

My user study contains three session tasks with one MG per session task. For

each user query in a session, the participants were requested to select all the rec-

ommendations amongst the top-3 system recommendations that the user felt were

interesting and useful with respect to the given user query. The users could also choose

a “none of the above” option, if none of the recommendations seemed useful. I evaluate

the quality of BI-REC recommendations in terms of two metrics: (1) Precision@3,

168

which is the percentage of total user responses where the user chose at least one of

the top-3 system recommendations as useful, and (2) Mean Reciprocal Rank (MRR)

(Equation 6.19), where ranki is the ranked position of the system recommendation

that received the most user votes, among the top-3 recommendations. For example, if

BI-REC ’s second recommendation was the one that received the most user votes for

a query qi, then ranki = 2. I compute MRR per session (or session task) by averaging

the reciprocal ranks of the most voted system recommendations for each query, across

all queries Q in a session (or session task).

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(6.19)

Table 12 shows the results of the user study in terms of Precision@3 and MRR

for the three session tasks. I see that for all three tasks Precision@3 is high, with an

average of 91.90%. The user study results thus validates the effectiveness of BI-REC in

terms of making good quality recommendations that are useful to the users for guided

data analysis for BI applications.

BI-REC does reasonably well in terms of MRR with an average MRR of 0.62

across all three session tasks. I notice that the MRR score for TaskUS2 is lower

compared to the other two tasks. Upon further investigation of TaskUS2 results, I

saw that BI-REC prioritized recommending BI patterns with opBI such as a PIVOT

(switching the dimensions by which the analyzed measure was being sliced/diced

by) over other BI patterns with opBI such as COMPARE (comparing two measures

along a dimension) or TREND (analyzing the variation of measures over time). BI-

REC makes these BI pattern recommendations based on patterns learned from prior

user sessions. However, some users in the study found the recommendations with the

COMPARE and TREND operations more useful. I leave further investigation and

169

improvement of BI recommendation rankings based on user feedback/preference as

future work.

6.5.5 BI-REC Component Evaluation

I evaluate BI-REC ’s components w.r.t. (1) state representation, (2) IntentBI

prediction, and (3) BI pattern PBI recommendation.

6.5.5.1 Evaluation of State Representation

I evaluate the state graph embeddings of the GNN model by (1) varying the

levels of enrichment of the state graph with elements from the ontology neighborhood

ON and (2) varying #embedding dimensions, #GraphSAGE layers and the type of

aggregation layer (Section 6.3.2.1).

Figure 54 shows the 5-Fold evaluation results of state representation using Graph-

SAGE [57]. The training and test sets consist of sampled matching and non-matching

pairs of states created using a state similarity (Equation 6.12) threshold. State pairs

with Sim > 0.5 are considered as matches, and the rest are considered as non-matches.

I use F1-score, RMSE, accuracy and training time as metrics for this evaluation.

Figures 54a and 54b show the embedding (64-dimensional) quality with different levels

of enrichment.

• {BI} – no enrichment with only the root node and the elements of PBI are included

in the state graph;

• {BI,MG,EM} – including the elements in PBI along with the measure groups

(MG) and expanded measures (EM) from ON ;

170

• {BI,MG,EM,DG} – including the elements in the PBI , MG, EM along with the

dimension groups (DG) from ON ;

• {BI,MG,EM,DG,ED} – including the expanded dimensions (ED) from ON

along with PBI , MG, EM, DG.

F1-Score RMSE Accuracy0.0

0.2

0.4

0.6

0.8

1.0

F1
-S
co
re
/ R
M
SE
/ A
cc
ur
ac
y

0.
18

0.
29

0.
77

0.
43

0.
26

0.
87

0.
49

0.
24

0.
86

0.
53

0.
21

0.
88

Comparison of Graph Structures

{BI}
{BI, MG, EM}

{BI, MG, EM, DG}
{BI, MG, EM, DG, ED}

(a) Embedding quality (HIW)

F1-Score RMSE Accuracy0.0

0.2

0.4

0.6

0.8

1.0

F1
-S
co
re
/ R
M
SE
/ A
cc
ur
ac
y

0.
04

0.
37

0.
68

0.
02

0.
41

0.
59

0.
04

0.
39

0.
6

0.
09

0.
29

0.
78

Comparison of Graph Structures

{BI}
{BI, MG, EM}

{BI, MG, EM, DG}
{BI, MG, EM, DG, ED}

(b) Embedding Quality (GoSales ST-
Normal)

{BI} {BI, MG,
 EM}

{BI, MG,
 EM, DG}

{BI, MG,
 EM, DG, ED}

Level of Ontology Enrichment

0
1
2
3
4
5
6
7

Tr
ai
n
Ti
m
e
in
 h
ou
rs

0.9 1.11

2.99

5.99

Comparison of Graph Structures

(c) Training time (HIW)

{BI} {BI, MG,
 EM}

{BI, MG,
 EM, DG}

{BI, MG,
 EM, DG, ED}

Level of Ontology Enrichment

0

1

2

3

4

5

Tr
ai
n
Ti
m
e
in
 h
ou

rs

3.19
3.79 3.91 4.12

Comparison of Graph Structures

(d) Training time (GoSales ST-Normal)

Figure 54: Evaluation of state representation in BI-REC at various levels of ontology
enrichment (best viewed in color).

Figures 54a and 54b indicate that I achieve the best embedding quality with {BI,

MG, EM, DG, ED} across both datasets. The reason is that only relying on the

queried elements to represent a state graph leads to a rigid similarity criterion. On

the other hand, enriching the state graph with rich semantic information from ON

171

relaxes the similarity criterion to include semantically similar state graphs that might

not have been seen in prior workloads.

Figures 54c and 54d show that the time required to train the GNN model for

state representation (an offline process), for {BI, MG, EM} on both the HIW and

GoSales workload is significantly lower than that of {BI, MG, EM, DG, ED}, while

yielding comparable accuracy on both datasets. Hence, I use {BI, MG, EM} as the

default expansion level for state graph representation.

Dim F1-score RMSE Accuracy Training (sec)
32 0.34 0.3 0.82 3139
64 0.43 0.26 0.87 3991
128 0.43 0.24 0.88 7127
256 0.47 0.23 0.89 7163

Layers F1-score RMSE Accuracy Training (sec)
2 0.35 0.26 0.84 2486
3 0.42 0.26 0.86 2614
4 0.43 0.26 0.87 3991
5 0.4 0.29 0.82 4320

Aggregation F1-score RMSE Accuracy Training (sec)
Mean 0.43 0.26 0.87 3991

MaxPool 0.42 0.26 0.86 5820
LSTM 0.25 0.32 0.81 10108

Table 13: Ablation study on state representation in BI-REC (HIW) - Varying
#dimensions, #layers & aggregation layer

Table 13 shows an extensive evaluation of the variation of embedding quality and

model training time on the HIW workload as I vary - a) the number of dimensions of

the embedding vector, b) the #layers of GNN aggregation, and c) the aggregation

type. The dimensionality variation shows that the accuracy increases from 0.82 to

0.87 between 32 and 64 dimensions, while there is no substantial increase beyond 64

dimensions. Therefore, for the sake of compactness, I choose 64-dimension embed-

dings. The #GraphSAGE layers indicate the #hops of the neighborhood that are

captured from the state graph into the embedding. Table 13 shows that the ontology

neighborhood is best captured at 4 hops. Likewise, Mean aggregation layer performs

172

better than LSTM and MaxPool, and is hence chosen as the default aggregation

type in BI-REC.

6.5.5.2 Evaluation of Top-k BI Intent Prediction

Figures 55a and 55b show the 5-Fold F1-scores for the top-k IntentBI predictors

at k=3, which were measured by comparing the expected IntentBI obtained from

the next state in the workload of prior user sessions, against the predicted IntentBI .

The reported F1-scores are a weighted combination of opBI F1 and MG F1 and

assign equal weightage (0.5) to predicting both BI operator and the measure group

within IntentBI . I compare the performance of BI-REC top-k BI Intent prediction

using several different multi-class classifier models and see that RF performs very

well compared to other models. Feeding sequences of states (BI patterns) does not

bring a significant benefit to the LSTM and hybrid RF+LSTM models. This can be

explained by my empirical observation that learning individual state transitions well

is equivalent to learning the sequences effectively.

The results highlight the effectiveness of my two-step approach that reduces the

search space of IntentBI . This allows us to train simpler multi-class classifiers such

as RF to achieve high accuracy using a small amount of training data (100-180

sessions with 5-8 queries per session). Double DQNs perform poorly because they

serve as approximations to the Q-table and thereby require a significant amount of

training data before producing robust and convergent predictions that align well with

a materialized in-memory Q-table.

173

OpBI F1 MG F1 Weighted F10.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
F1

-s
co

re

Random Forests
LSTM

RF+LSTM
Double DQN

(a) IntentBI prediction (HIW)

OpBI F1 MG F1 Weighted F10.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
F1

-s
co

re

Random Forests
LSTM

RF+LSTM
Double DQN

(b) IntentBI prediction (GoSales ST-
Normal)

BI
Operator

Measure
Groups

Measures Dimensions0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed
ict
io
n
F1

-s
co

re 0.79

0.95
0.91

0.66

(c) PBI prediction (HIW)

BI
Operator

Measure
Groups

Measures Dimensions0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed
ict
io
n
F1

-s
co

re

0.87

0.72

0.54

0.36

(d) PBI prediction (GoSales ST-Normal)

Figure 55: Comparison of IntentBI classifiers & PBI prediction quality breakdown in
BI-REC (best viewed in color).

6.5.5.3 Evaluation of Top-k BI Pattern Prediction

I evaluate PBI prediction using my proposed two-step approach w.r.t. the prediction

F1-score computed based on the Jaccard similarity between the predicted and the

actual next PBI from the workload (similar to [43]). I provide a breakdown of this

F1-score (Figures 55c and 55d) across different elements in the predicted BI pattern

PBI , such as opBI , Measures, Dimensions, and MG within the session task. I get a

relatively higher F1 score for all components of PBI other than the Dimensions. This

174

could be attributed to the much larger number of Dimensions as compared to the real

Measures and Measure Groups (MGs) in the underlying datasets. In order to improve

the dimension F1-score, I refine the final query recommendations by exploiting the

co-occurrence statistics between the Measures and Dimensions in prior workloads.

BI-REC recommends Dimensions that occur most frequently with the Measures in

the predicted BI pattern improving the Dimension prediction F1-score to 0.73 on the

HIW workload. Further details can be found in [14].

I choose the top-k IntentBI predicted by RF multi-class classifier model with k

ranging from 1 to 3 and recommend one BI pattern PBI per chosen IntentBI . Prediction

of up to 3 PBIs per user query is in line with earlier works on SQL query prediction [94],

which takes the cognitive ability of real human users into account.

6.6 Appendix

In this appendix, I provide implementation details for BI-REC as well as describe

the content made available via a public GitHub repository [14] that facilitates the

reproducibility of my proposed system.

6.6.1 Implementation Details for IntentBI Predictors

In this section I provide implementation details of the various IntentBI predictors

mentioned in Section 6.4 and evaluated in Section 6.5.5.2. The parameters used for

the IntentBI predictors are described in Table 14.

While random forests use an ensemble of 100 decision trees with unlimited depth,

LSTMs use 3 layers with one hidden layer, Stochastic Gradient Descent optimizer with

175

ML Model Parameters
Random Forests 100 trees with unlimited depth

LSTM 100 epochs, learning rate=0.001, 1 hidden layer, SGD momentum=0.9
Double DQN γ=0.5, 40 random actions, |minibatch|=10, dropout=0.2

Table 14: Parameter Settings for IntentBI Predictors

a momentum of 0.9, learning rate of 0.001, 100 epochs and a softmax layer to predict

the IntentBI corresponding to the next BI pattern as a class label among all possible

BI intents. I perform training in the form of mini-batches where in each training

session, for the arrival of each new user query, the concatenated 64-dimensional state

embeddings of all the BI patterns corresponding to the sequence of user queries thus

far in the session, are fed to the LSTM as input, and the expected intent is fed as

the class label, to kickstart backpropagation. The hybrid RF+LSTM model uses the

output vector from LSTM as the input feature vector to random forests. Thus, LSTM

takes a variable length query sequence as input, and it can either be used directly as

a classifier, or as a fixed-length output vector generator that is in turn consumed by

downstream classifiers such as random forests.

Double DQNs for Reinforcement Learning (RL) use a 3-layer network similar to

LSTM, but the LSTM hidden layer is replaced by a simple affine layer in the DQN. I

use a dropout value of 0.2 to prevent overfitting. I use a minibatch of 10 queries to

update the target DQN with the latest updated DQN periodically. I also allow the

DQN to explore 40 random actions in addition to the training set of queries present

in the minibatch. I use a value network to create a target Q-value using the Bellman

Equation which needs to be approximated by the value that the network predicts. I

set the discount rate, γ to 0.5 in the Bellman equation. The search space of all possible

IntentBIs is treated as the candidate set of RL actions. For the training set of queries,

I set the reward for the expected intent (action) to be higher than the remaining

intents (actions). Also, I bias more towards the prediction of MG as compared to

176

opBI since there are more MGs as compared to opBIs, that makes MG prediction

harder than that of opBI . I favor the actions that lead to session termination states

higher than the remaining actions. Algorithm 9 shows how the reward is assigned

to the DQN when it predicts an intent predictedIntent as opposed to an expected

intent expectedIntent. If the queryIndex is equal to sessionLength-1, that indicates

session termination.

I implemented PBI predictors, i.e., index-based CF and the exhaustive CF baseline

from scratch, the details of which are in the earlier sections.

6.6.2 Workload generation: Real and Synthetic User Session Creation

This section describes the implementation details of my synthetic workload gener-

ator for generating different workloads used for evaluating BI-REC (Section 6.5.1.2).

The implementation of user sessions creation has three building blocks - a) ontology

graph parsing and augmentation, b) creation of probability distributions required for

synthetic user sessions and c) creation of state graphs for each state in a user session.

6.6.2.1 Ontology Graph Parsing and Augmentation

The HI and GoSales ontologies I use are available as .owl files. I visualize the OWL

files using Stanford Protégé, https://protege.stanford.edu. I utilize three categories of

elements in each OWL file for ontology parsing - 1) Classes, 2) Data Properties and 3)

Object Properties.

• The hierarchy of measures, measure groups, and dimension groups are available as

ontology Classes.

177

https://protege.stanford.edu

Algorithm 9 assignReward(predictedIntent, expectedIntent, queryIndex,
sessionLength)
1: pred_opBI = predictedIntent.opBI
2: exp_opBI = expectedIntent.opBI
3: pred_MG = predictedIntent.MG
4: exp_MG = expectedIntent.MG
5: if pred_opBI == exp_opBI && pred_MG == exp_MG then
6: if queryIndex == sessionLength - 1 then
7: reward = 2.0
8: else
9: reward = 1.0
10: end if
11: else if pred_opBI 6= exp_opBI && pred_MG == exp_MG then
12: if queryIndex == sessionLength - 1 then
13: reward = 1.5
14: else
15: reward = 0.75
16: end if
17: else if pred_opBI == exp_opBI && pred_MG 6= exp_MG then
18: if queryIndex == sessionLength - 1 then
19: reward = 0.45
20: else
21: reward = 0.25
22: end if
23: else if pred_opBI 6= exp_opBI && pred_MG 6= exp_MG then
24: reward = -2.0
25: end if
26: return reward

• The dimensions grouped under each dimension group are available as Data Properties

in the ontology. Each dimension is listed as a data property as well as a sub-property

of its parent dimension group. The relationships between dimensions and dimension

groups can be functional or non-functional depending on whether the dimension

has a single parent or multiple parents.

• The relationships between measures and dimension groups are available as Object

178

Properties in the ontology. If a measure is connected to a dimension group, it can

be sliced/diced by the dimensions available under that group.

I use the OWL API (http://owlcs.github.io/owlapi/) to parse the OWL files. This

helps us extract all the ontology elements including concepts, data properties and

object properties including all hierarchies for the measure and dimension groups. The

code to parse and augment the ontologies is written in Java.

Ontology Augmentation - I augment the ontologies with synthetic measure groups

and measures whose names are synthetically generated. In order to preserve the

proximity between the synthetic measures and their parent measure groups, I use the

same prefix (a randomly generated String) for a measure group and the associated

measures. For e.g. a synthetic measure group with label PREFIX_MG_0 would be

associated with synthetic measures that would inherit the same prefix with a label

PREFIX_M_0. Another challenge is to create the relationships between the newly

introduced synthetic measures and the real and synthetic dimension groups in the

ontology. I record the distribution of relationship frequencies between the existing

(real) measures and dimension groups and emulate the same distribution to create the

synthetic relationships.

6.6.2.2 Creation of Probability Distributions for Synthetic User Sessions

I have mentioned two types of synthetic workloads, BT-Workloads and ST-

Workloads, in Tables 8 and 9, respectively, along with the parameters. In order

to create discrete probability bins, I employ Algorithm 10, which draws samples from

the distribution (Line 3), converts the samples into densities using the Probability

Density Function (PDF) corresponding to the distribution (Line 4), and subsequently

179

http://owlcs.github.io/owlapi/

normalizes the densities to generate a set of cumulative probabilities which act as dis-

crete range bins (Line 5). I bin the available set of BI transitions (for BT-workloads)

or Measure Groups (for ST-Workloads) into these discrete probability ranges, by

generating a random probability for each candidate and detecting which specific range

the probability falls into (Lines 6-15).

Algorithm 10 genBins(distName, parameters, numBins, elements)
1: bins← initializeEmptyBins(numBins)
2: dist← createDistribution(distName, parameters)
3: samples← drawSamples(dist, numBins)
4: densities← distribution.PDF(samples)
5: cumulativeProbs ← normalizeDensities(densities, 0.0, 1.0)
6: for i: 0 to |elements|-1 do
7: candidateElement← elements[i]
8: randomProb←Math.random()
9: for j: 0 to numBins do
10: if randomProb ≤ cumulativeProbs[j] then
11: add candidateElement to bins[j]
12: break
13: end if
14: end for
15: end for
16: return bins

6.6.2.3 Creation of Session Graphs

The session graphs are created (in Java) at various levels of ontology neighborhood

expansion as described in Section 6.3.1 using adjacency lists. These graphs are

subsequently loaded in Python using the DGL library https://www.dgl.ai. This is

because, the state representation is learned in BI-REC using GNNs implemented with

the assistance of the DGL library and the input graphs are expected in a compatible

format.

180

https://www.dgl.ai

6.6.3 Availability

The techniques implemented in BI-REC have been patented by IBM. Further the

healthcare dataset HI contains sensitive data and is proprietary to IBM. Hence both

the source code for BI-REC and the HI dataset cannot be made publicly available at

this time. However, in order to help with reproducibility of my proposed solution I

are making the GoSales dataset publicly available in my GitHub repository [14]. As a

part of that effort, I have made the following items available in my GitHub repository.

1. Base Ontology - This is the original GoSales ontology without the synthetic

measure groups and measures.

2. Synthetic Vocabulary - This consists of the additional synthetic measure groups

and measures introduced into the ontology to help us create a large-scale ontology

for a comprehensive evaluation of BI-REC.

3. Probability Distributions - The corresponding material shows how the sessions

are distributed amongst the measure groups available in the ontology, as per various

statistical distributions.

4. ST-Sessions & BT-Sessions - The state graphs in all the 20 workloads corre-

sponding to the GoSales ontology are made available in textual format. I also

stored the session graphs with varying levels of ontology neighborhood expansion.

5. BERT embeddings & GraphSAGE models - The BERT embeddings for all

the node concepts in the ontology graph are stored along with the GraphSAGE

models that produce the embeddings for state representation.

6. KFoldSplits and KFoldOutputLogs - The training and test files consisting of

the sessions IDs for the 5-Fold splits are stored along with the output logs for all

the results reported in this section on the GoSales ontology.

181

Chapter 7

LEARNING CARDINALITY ESTIMATION FOR SPATIAL QUERIES

In this chapter, I will present the solution to the research problem Q5 that I have

discussed in Section 2.1.1 pertaining to “cardinality estimation for spatial range and

distance queries”. In Sections 2.1.1.1 and 2.2.4 in Chapter 2, I have established the

need for cardinality estimation using ML models that can achieve high accuracy with

least online prediction latency and how it can speed up query optimization thereby

contributing to a seamless data exploration session between a human-in-the-loop and

the database system. Note that cardinality estimation not only helps in accelerating

the predicted next query execution but also speeds up the execution of the current

query issued by the user in an ongoing human-database interaction.

Since spatial cardinality estimation is relatively less explored compared to relational

cardinality estimation, I will present supervised and active learning solutions for spatial

range and distance queries. I will propose a batched selection algorithm called hybRID

and will evaluate hybRID in conjunction with several regression models upon 16

range and distance query workloads on 6 real-world point and polygon datasets and 1

synthetic polygon dataset. Finally, I will present a cost-benefit analysis that compares

active learning against supervised learning in terms of overall latency that is crucial

in estimating the utility of these ML approaches for spatial cardinality estimation.

182

(a) Cardinality Estimation using Super-
vised Learning

(b) Cardinality Estimation using Active
Learning

Figure 56: Supervised Learning vs. Active Learning for Spatial Cardinality Estimation

7.1 System Overview

My system supports cardinality estimation for spatial queries using either super-

vised learning (SL) or active learning (AL).

7.1.1 Supervised Cardinality Estimation

Supervised cardinality estimation requires that the training queries are executed

against the spatial database engine in an offline pre-processing step to obtain their

result set cardinalities upfront. The set of training queries along with their result

cardinalities are fed to a feature extractor which derives a numerical representation

for each query. The numerical feature vectors are used to train a regression model as

shown in Figure 56a.

183

7.1.1.1 Feature Extraction

As mentioned in Section 2.1.1.1, I estimate cardinalities for two types of spatial

queries - a) Range queries which determine the points that lie within a polygon, and

b) Distance queries which return all the points that lie within a fixed distance (radius)

from a given point of interest. Feature extraction is based on the type of the issued

query. For range queries, I compute the Minimum Bounding Rectangle (MBR) of

the polygon and use the coordinates of its left-bottom and top-right vertices as the

features. This helps me succinctly achieve dimensionality reduction for polygons with

several vertices using a fixed number of feature dimensions. For distance queries, I

use the coordinates of the point of interest along with the radius as features.

/* Range Query - Polygon x Points */

Q(R): Select Points.long, Points.lat from

Points where ST_Contains(

ST_PolygonFromEnvelope(-73.997, 40.74, -73.999, 40.75),

ST_Point(Points.long, Points.lat));

/* Distance Query - Points x Radius */

Q(D): Select P2.long, P2.lat from Points P1, P2

where P1.long = -73.97 and P1.lat = 40.75 and

ST_Distance(ST_Point(P1.long, P1.lat),

ST_Point(P2.long, P2.lat)) <= 0.22;

Example 1: In the above example, the feature vector FR for the range query Q(R)

is <-73.997, 40.74, -73.999, 40.75> and the feature vector FD for the distance

query Q(D) is <-73.97, 40.75, 0.22>.

184

Note that I featurize the polygons and points of interest which appear as pa-

rameters in the queries, but not the underlying set of points upon which these queries

are executed. This is because it is unnecessary and not scalable to represent the entire

point dataset in each feature vector when both the training and test set of queries are

issued upon the same set of underlying points. As a future work, I will extend my

solution to the domain adaptation setting where the model trained on points and

queries from one domain is transferred to another domain for testing purposes. In

that scenario, I would augment the feature vector with dimensions that concisely

represent the collective statistical properties of the distribution of points such as the

entropy. Also, I currently evaluate workloads consisting of the containment predicate

i.e., ST_Contains(), the extension of which to other predicates such as ST_Intersects()

or ST_Overlaps() can be done in a straightforward manner by appending a one-hot

vector of dimensions typically used for categorical attributes and setting the dimension

corresponding to the predicate appearing in the query with 1.

7.1.1.2 Regression Models

The regression model is a pluggable component in my system and I evaluate several

models such as linear regression [17], Lasso [16], polynomial regression [18] and gradient

boosting trees [15]. I also adapted a state-of-the-art deep learning (DL) regression

model [75] which was originally devised for relational cardinality estimation towards

spatial cardinality estimation. The spatial feature vectors are fed to a multi-layer

perceptron (MLP) module which is a fully-connected neural network consisting of an

input affine layer with a ReLU activation function that uses 64 hidden dimensions

185

and an output affine layer that transforms the 64-dimensional vector into a single

dimensional output. I used batch normalization for stable network predictions and a

mini-batch size of 100. Interestingly, the sigmoid output layer emits the cardinality

as a fractional value which is multiplied by the size of the input table to obtain

the actual cardinality estimate. The parameter settings of all the regression models

are listed in Table 15. As mentioned in Section 2.1.1.1, the pre-trained regression

models overcome the 0-Tuple problem, and also have short inference latencies unlike

unsupervised cardinality estimation based on spatial sampling. However, supervised

learning requires a large training set of queries to be executed which can incur long

pre-processing latencies before model learning commences. To overcome this problem,

I propose the usage of active learning.

7.1.2 Active Learning for Cardinality Estimation

Figure 56b shows that active learning (AL) requires a small set of pre-executed

queries and their cardinalities to be made available upfront as seed training data

(line 1 in Algorithm 11). In each AL iteration, the regression model learned thus

far predicts the cardinalities for a large unexecuted corpus of queries (lines 3 and 4).

The feature vectors of the unexecuted queries are passed to an example selector (also

called as sample selector) which selects an ambiguous subset of queries for which the

cardinalities are difficult to predict (line 5). This subset of queries is executed upon

the spatial database engine which acts as an oracle by providing the true cardinalities

(line 7). The newly obtained cardinalities are then added to the training set (line 8)

upon which the regression model is re-trained in the subsequent AL iteration (line 2).

Note that the quality of the example selector determines the usefulness of the selected

186

queries in quickly improving the quality of the regression model. AL iterations can be

terminated when a pre-specified query execution budget or the unexecuted query set is

exhausted. In this work, I empirically show that AL achieves competitive cardinality

estimates with fewer queries1 (labels) that translates into actual latency savings.

Algorithm 11 Active Learning for Cardinality Estimation
Require: Seed query cardinalities (Seed<Q,Card>), Unexecuted queries (UQ), query

execution budget (budget), #queries to select per AL iteration (|batch|), spatial
database (DB)

1: init Train<Q,card> ← Seed<Q,card>
2: while |Train<Q,card>| ≤ budget ∧ |UQ| > 0 do
3: model ← learn(Train<Q,card>)
4: predCards ← predictCardinalities(model, UQ)
5: batchQ ← selectQueries(UQ, model, predCards, |batch|)
6: UQ ← UQ \ batchQ
7: batch<Q,card> ← execute(batchQ, DB)
8: Train<Q,card> ← Train<Q,card> ∪ batch<Q,card>
9: end while

7.1.2.1 Example (Query) Selectors

I categorize the example selectors for AL-based cardinality estimation as - a)

model-dependent, or b) query-dependent. Model-dependent selectors use the regression

model output for query selection whereas query-dependent selectors ignore the model

and use the feature vectors corresponding to the unexecuted queries in order to

select ambiguous queries. I implemented Query-by-Committee (QBC) and Expected

Model Change Maximization (EMCM) from the model-dependent category and Greedy

Sampling (GS) from the query-dependent (data-dependent as per regression literature)

category as the baseline selectors.

1Note that I use samples, queries, examples and labels interchangeably in this chapter.

187

1. Query-by-Committee - RayChaudhuri and Hamey [119] and Burbidge,

Rowland, and King [19] proposed this committee-based approach which creates a

committee of regression models from the training data (cumulative set of queries

selected until the current AL iteration) and applies the committee upon the unlabeled

data (unexecuted set of queries). The subset of top-k queries having the maximum

variance among their cardinalities predicted by the committee is selected in each

AL iteration. The batch size k of selected queries is passed as a configuration

parameter. The variance of an unexecuted Query is computed as varianceQuery =

1
|Models|

∑|Models|
i=1 (ciQuery − cmeanQuery)

2 where |Models| is the size of the committee, ciQuery

is the cardinality predicted by the ith regressor in the committee, and cmeanQuery is the

average cardinality predicted by the committee for the query.

2. Expected Model Change Maximization - Although QBC maximizes the

disagreement among the committee, it cannot guarantee that the examples selected

will alter the regression model. Therefore, EMCM [21, 20] was proposed also as a

committee-based approach which selects top-k examples that maximally influence the

regression model. The expected model change or influence of a query on the regression

model is computed as an asymptotic formula, EMCQuery = 1
|Models|

∑|Models|
i=1 ||(ciQuery−

cmeanQuery)Query||, where the terms are similar to the computation of QBC and Query

represents the feature vector of the unexecuted spatial query.

3. Greedy Sampling - Yu and Kim [172] proposed greedy sampling (GS) which

selects the top-k unexecuted queries that are most dissimilar to the training set of

queries. Since I work with spatial queries which are represented by the coordinates of

the polygon or point of interest along with the radius, I use Euclidean distance between

the feature vectors to implement the dissimilarity. For each unexecuted Query, the

distance is measured as distQuery = mintq∈TSEuclideanDistance(Query, tq) where

188

the minimum among the distances to the training set of queries, TS, is chosen. An

improved greedy sampling (iGS) algorithm [165] computes the distance not only

between the feature vectors of the queries but among their predicted cardinalities as

well.

4. Limitations - The computation of variance or EMC for model-dependent

selectors turns out to be more accurate with an increasing committee size which

also results in a higher selection latency. Likewise, greedy sampling (GS) takes a

quadratic amount of time to compute the query distances which I have optimized in

my implementation by using batched and incremental updates of distances among

queries. Even with substantial optimization, iGS incurred extremely long selection

latencies and led to timeouts.

Apart from latency, the inherent limitation that the model properties are not

exploited by query-dependent selectors and the distribution of query feature dimensions

is not sufficiently utilized by the model-dependent selectors can be overcome only

by hybrid selection approaches that utilize both model and the queries (feature

vectors). Wu [164] and Liu and Wu [84] proposed a hybrid approach that utilizes

clustering to approximate greedy sampling but its primary limitation is that it is a

sequential selection technique that can select one example (query) in each AL iteration.

To enable such sequential selection, [164] uses as many clusters as the number of

training examples (queries) which is unscalable to large query repositories and towards

batched selection of ambiguous queries.

189

7.1.3 hybRID Selection of Spatial Queries

In order to overcome the limitations of sequential example selectors [164, 84],

I propose hybRID that enables batched selection of ambiguous queries with high

Representativeness (representative of the query distribution), Informativeness (useful

in refining the regression model) and Diversity (unique among the unexecuted set

of queries) in a spatially-aware manner. Batched selection is crucial for cardinality

estimation because query logs can be huge and selecting multiple queries per iteration

enables batched execution that reduces #AL iterations as compared to selecting

one query per iteration. Although I propose hybRID for spatial query selection, it

can be applied to generic regression problems as a batched selector that is both

model-dependent and query-dependent.

Existing sequential selectors [164, 84] greedily try to find clusters that have the

least overlap with the training set of examples, and in this process, they keep increasing

the number of clusters in each iteration as the training set keeps getting larger. To

overcome their scalability bottleneck, hybRID only clusters the unexecuted set of

queries and it deploys very few #clusters (≤20) regardless of the size of the query

corpus. This is because the training batch of queries in each AL iteration is drawn

from the unexecuted corpus, which implies that the most unique and distinct subset of

queries within the unexecuted corpus will also be different from the general distribution

of the training set of queries accumulated so far.

Algorithm 12 shows the working of hybRID in which line 1 clusters the set of

unexecuted queries UQ using a pre-specified #clusters. I adopt the K-Means algorithm

because its default Euclidean distance metric is particularly favorable to cluster the

feature vectors of spatial queries that predominantly comprise the polygonal and

190

Algorithm 12 hybRID selection of spatial queries
Require: Training set of query cardinalities (Train<Q,card>), Unexecuted queries

(UQ), #queries to select per AL iteration (|batch|), committee size (numModels),
#clusters

1: clusters ← clusterQueries(UQ, #clusters)
2: divClust ← detectMostDiverseCluster(clusters)
3: models ← learnCommittee(Train<Q,card, numModels)
4: divClust<Q,EMC> ← computeEMC(divClust, models)
5: batchQ ← selectTopEMCQueries(divClust<Q,EMC>, |batch|)
6: return batchQ

point geo-coordinates. Among the spatial query clusters, I pick a cluster C which

has the largest distance d from the remaining clusters R, where d is defined as

min
|R|
i=1EuclideanDistance(C,R[i]). Thus, I maximize the minimum pair-wise inter-

cluster distance and choose the most diverse cluster divClust (line 2 in Algorithm 12).

If the size of divClust ≤ |batch|, I select multiple most diverse clusters. Note that

divClust also has high representativeness as I use very few clusters. In line 4, I

apply committee-based EMCM selection [21, 20] (discussed in Section 7.1.2.1) upon

divClust out of which I choose queries (batchQ in line 5) which have the highest

informativeness (EMC) for refining the regression model.

Example 2: Figure 57 shows the COUNTY-AREALM dataset where colored polygons

indicate counties in the United States and the end goal is to train a regression model

that can estimate the number of area landmarks within each county. hybRID derives

three large clusters that are representative of UQ, among which the red cluster on the

US west coast is chosen as it is the farthest from the blue and green clusters and is

highly diverse. I apply EMCM with a committee of two regression models learned from

TrainQ, upon the red cluster to choose the most informative subset of polygon queries

(batchQ).

191

Figure 57: Illustration of hybRID selection of Spatial Queries

7.1.3.1 Variants of hybRID

I enable hybRID to function in three modes that can choose either a) the most

diverse cluster, b) the largest cluster, or c) a weighted combination of the cluster size

and diversity. EMCM is further performed on the selected cluster to select the batch of

ambiguous queries. Empirically, I found that diversity is the most dominant metric and

yields the best results (see Figure 64 for details). Similarly, I implemented an adaptive

variant of hybRID which sets #clusters to a high value (passed as a configuration

parameter) in the initial AL iteration and gradually reduces the #clusters to the

least possible value (which is 2 clusters) before AL termination. Instead of setting a

fixed #clusters, this variant adaptively adjusts its value as the regression model gets

stronger in each AL iteration. An ablation study varying #clusters (see Figure 62)

showed an affinity towards fewer clusters.

192

7.2 Experimental Evaluation

In this section, I will empirically answer the following questions.

1. Among the various supervised learning (SL) models, (i.e., regression models vs.

deep learning architectures) which one performs the best for spatial cardinality

estimation w.r.t. quality and latency across diverse query workloads? How does

the best-performing SL model compare against an unsupervised stratified sampling

baseline?

2. How does my proposed hybRID selector for active learning (AL) compare against

state-of-the-art model-dependent and query-dependent example selectors upon each

regression model w.r.t. spatial cardinality estimation?

3. How do the regression models compare against each other when each of them is

combined with hybRID for query selection?

4. How does AL compare to SL upon each spatial query workload? Does AL bring

tangible benefits to spatial cardinality estimation when an overall cost-benefit

analysis is done?

5. Among the various error metrics that exist for regression models, which is the most

discriminative metric and which is the most consistent metric that concurs with

other metrics?

193

ML Model Abbr. Parameters
Deep Learning DL 5K epochs, learning rate = 0.001, loss function = MSE/MAPE/Q-Error

Linear Regression LR default settings of scikit-learn LinearRegression
Lasso Lasso α = 0.1 and other default settings of scikit-learn Lasso

Polynomial Regression PR degree = 2 with linear models
Gradient Boosting Trees GBT 20 trees with depth of 4, learning rate = 0.001

Table 15: Parameter Settings for ML Models

Point Source #Points Query Workload # Range Avg.
(Polygon × Points) Queries Cardinality

ZCTA-AREALM 26,628 8.83 (0.007%)

Area Landmark 129K
COUNTY-AREALM 3,231 57.38 (0.04%)
STATE-AREALM 56 3,328.93 (2.6%)

ZCTA-AREAWATER 29,588 145.7 (0.006%)

Area Hydrography 2.3M
COUNTY-AREAWATER 3,233 1,030 (0.045%)
STATE-AREAWATER 56 59.7K (2.6%)

NYCTaxiTrips 217K SyntheticPolygons-NYC 10,000 33.3 K (15.3%)

Table 16: Details about Range Queries (Polygon × Points).

Workload ZCTA-AREALM COUNTY-AREALM STATE-AREALM
[Min, Max] 1(8E-04%), 1.4K(1.14%) 1(8E-04%), 2.6K(2%) 38(0.03%), 10.5K(81.6%)

Workload ZCTA-AREAWATER COUNTY-AREAWATER STATE-AREAWATER
[Min, Max] 1(4.4E-05%), 8K(0.34%) 2(8.8E-05%), 14K(0.61%) 23(0.001%), 549K(23.9%)

Workload Synth. Polygons (NYC)
[Min, Max] 3(0.001%), 195K(89.8%)

Table 17: Minimum and Maximum Cardinalities for Range Queries (Polygon ×
Points).

7.2.1 Experimental Setup

7.2.1.1 Datasets and Query Workloads

I used 6 real-world point and polygon datasets and an additional synthetic polygon

dataset upon which I created 16 different query workloads. The point datasets comprise

129K area landmarks (AREALM), 2.3M area water bodies (Area Hydrography or

AREAWATER) within the United States [46, 47] and 217K distinct pick-up and

drop-off locations from a subset of 100K taxi trips for the year 2016 within the New

York City (NYC) [144]. The polygon datasets consist of 33K US Zip codes, 3K US

194

Point Source #Points Low Radius Distance Queries (WGS84◦ CRS)
Min. Max. Avg.

Radius Radius Cardinality #Queries

Area Landmark 129K
10−4 10−2 1.6 (0.001%) 100K

Area Hydrography 2.3M
10−4 10−2 3.1 (0.0001%) 100K

NYCTaxiTrips 217K 10−6 10−4 4.17 (0.0019%) 100K
Point Source #Points Medium Radius Distance Queries (WGS84◦ CRS)

Min. Max. Avg.
Radius Radius Cardinality #Queries

Area Landmark 129K
10−2 1 217 (0.17%) 10K

Area Hydrography 2.3M
10−2 1 4,987.5 (2.17%) 10K

NYCTaxiTrips 217K 10−4 10−2 6,213.7 (2.86%) 10K
Point Source #Points High Radius Distance Queries (WGS84◦ CRS)

Min. Max. Avg.
Radius Radius Cardinality #Queries

Area Landmark 129K
1 103 127.4 K (98.7%) 1K

Area Hydrography 2.3M
1 10 378.6 K (16.5%) 1K

NYCTaxiTrips 217K 10−2 10−1 137.2 K (63.1%) 1K

Table 18: Details about the Distance Queries (Points × Radius).

Workload AREALM (Low Radius) AREALM (Medium) AREALM (High)
[Min, Max] 1(8E-04%), 53(0.04%) 1(8E-04%), 1.4K(1.1%) 3.1K(2.4%), 129K(100%)

Workload AREAWATER (Low) AREAWATER (Medium) AREAWATER (High)
[Min, Max] 1(4.4E-05%), 93(0.004%) 1(4.4E-05%), 21.6K(0.94%) 8.5K(3.73%), 1.14M(49.7%)

Workload NYCTaxTrips (Low) NYCTaxiTrips (Medium) NYCTaxiTrips (High)
[Min, Max] 1(4.6E-04%), 236(0.109%) 1(4.6E-04%), 35K(16.15%) 45(2E-04%), 209.9K(96.55%)

Table 19: Minimum and Maximum Cardinalities for Distance Queries (Points ×
Radius).

counties and 56 distinct polygons corresponding to regions within the 50 US states [46].

I also created 10K rectangular synthetic polygons from the aforementioned NYC point

dataset.

I created 7 range query workloads that return the points (landmarks, water bodies

or taxi dropoff/pickup locations) falling within the polygons in the dataset, the

195

details of which are in Table 16. The idea is to have query workloads of varying

cardinalities ranging from low to high. Zip-code polygons (ZCTA) cover smaller areas

as compared to counties and states and hence their cardinalities are lower. Since the

average cardinality is typically low (2.6%) even for the largest polygons (STATE),

my synthetic polygon queries were created to have high average cardinalities up to

15.3%. On similar lines, I varied the minimum and maximum radius bounds upon

all the three point datasets to create 9 distance query workloads of low, medium

and high cardinalities (see Table 18). Note that all the queries in my workloads (see

Tables 17 and 19) have non-zero cardinalities. For uniformity across workloads of

diverse cardinality ranges and to avoid sensitivity of error metrics such as MSE to

absolute values, my training and test cardinalities are measured as fractions (floating

point values between 0 and 1) relative to the size of the underlying point dataset,

instead of absolute values.

7.2.1.2 Evaluation Metrics

I report Mean Squared Error (MSE) [163] which is typically used to evaluate

the regression models, Mean Absolute Percentage Error (MAPE) [141] and Mean

Q-Error [75, 74, 171, 102, 101, 59, 83, 141] to measure quality, besides the training,

test and query execution latencies. In the definitions below, cardpredi is the predicted

cardinality for the ith query in a test set of N queries, and cardtruei indicates the true

cardinality of the spatial query.

• MSE = 1
N

∑N
i=1(card

pred
i − cardtruei)2, ∈ [0,∞)

• MAPE = 1
N

∑N
i=1

|cardpredi −cardtruei |
cardtruei

, ∈ [0,∞)

196

• Mean Q-Error = 1
N

∑N
i=1

max(Cpred
i ,Ctrue

i)

min(Cpred
i ,Ctrue

i)
∈ [1,∞)

where Cpred
i = ecard

pred
i and Ctrue

i = ecard
true
i

Note that the MAPE definition is borrowed from Sun, Li, and Tang [141], but

optionally the metric can be multiplied by 100 to convert the value into an actual

percentage. Q-Error is typically measured as the maximum of the predicted and

actual cardinalities divided by their minimum. Since I measure the cardinality as a

fractional value which can lead to very small values, I use their exponential following

the implementation of Kipf et al. [75] and how they handle fractional cardinality

estimates. As I only allow non-zero query cardinalities, a division by zero is not

expected for any metric.

I use 5-Fold Cross Validation (CV) to evaluate supervised learning (SL) by training

the models on 80% of the queries and testing them on the remaining 20%. I use the

following metrics to evaluate active learning (AL).

1) Progressive Error - Progressive MSE, MAPE and Q-Error are computed across

the entire set of queries in the workload, while drawing a sample of these queries

in each AL iteration. Progressive quality metrics have been used by the database

community in the past to evaluate AL for orthogonal applications [51, 48, 150, 96].

2) 5-Fold Error - In order to compare AL against SL, I use 5-Fold CV errors where

the sample selection in each AL iteration happens from 80% of the queries, and

evaluation is on the 20% test set.

3) Latency - I measure user wait time [96] in each AL iteration as the sum of query

selection latency and model re-training time.

4) % Labels - This is the percentage of unexecuted queries which are cumulatively

chosen by AL to achieve its least possible error.

197

5) Query Execution Latency - This is the time taken to execute queries chosen

by AL to achieve its least possible (convergent) error.

7.2.1.3 Baselines

I compare supervised learning models against an unsupervised, Spatially-aware

Stratified Sampling baseline (SpSS) which represents the area as a spatial grid [5, 33]

consisting of rectangular cells. Based on the ablation study in Tables 1 and 2, I choose

102 cells in the spatial grid and 1% sampling rate [45] as the default parameters since

they incur the least errors. I also assign each spatial object (point) to exactly one cell

and avoid the spatial object overcounting problem [140]. After sampling 1% spatial

objects (points) from each stratum (grid cell), I run the spatial query on the sampled

points and return its cardinality as a fraction. Following Kipf et al. [75], I impute

all the unanswered queries with a fixed cardinality fraction (0.5) to equally penalize

missing samples for both low and high cardinality query workloads.

I compare my proposed hybRID selector against state-of-the-art QBC [119, 19],

EMCM [21, 20] and greedy baseline selectors [172, 165] for regression discussed in

Section 7.1.2.1. I also compare active learning against the best-performing supervised

learning baselines.

7.2.1.4 Configurations and Settings

I ran my experiments on an Ubuntu 18.04.5 machine with Intel Xeon E5-2687WV4

CPU (12 cores, 3.0 GHz per core), 120 GB RAM and a 4 TB hard drive. I used a

cluster of 4 machines running Apache Sedona 1.1.0 with Spark 3.0.1 and Hadoop 2.7.2

198

as the spatial processing engine [173, 174] to execute the range and distance queries in

a distributed manner. I implemented supervised (SL) and active learning (AL) using

Python 3.8, PyTorch 1.10.2+cu102, and scikit-learn 1.0.2.

The parameter settings for deep learning (DL) and regression models are listed in

Table 15. Note that I train all the models using CPUs and do not enable GPUs for a

fair comparison among the models. Following are the settings used by AL.

1) #Seed Queries - I use 0.1% - 4% of the unexecuted queries as seed queries [96],

which are picked at random from the workload. I use 30 seed queries for all the query

workloads except STATE-AREALM and STATE-AREAWATER which only have 56

queries (polygons) in their workload where I used 2 seed queries.

2) Batch size - I select 1.27% of the unexecuted queries in each AL iteration, to

keep the overall experimental runtime bounded.

3) Termination criterion - I terminate all the experiments only upon the exhaustion

of the unexecuted query set, when all the queries are selected. This is to have a

comprehensive understanding of what the best possible error is and how soon it can

be achieved.

4) Committee size - In my proposed hybRID selector, I used a default committee

size of 2 to keep the query selection latency of AL to a minimum. I compared hybRID

against QBC and EMCM of committee sizes 2 and 10 (QBC-2, QBC-10, EMCM-2,

EMCM-10).

7.2.2 Evaluation of Supervised Learning

Tables 20 and 21 show the quality and latency results respectively for various

supervised learning (SL) approaches along with the unsupervised spatially-aware

199

stratified sampling baseline (SpSS). The bold, underlined entries under each category

depict the best-performing SL approach for a specific query workload, and their

color depicts whether the SL approach has outperformed SpSS baseline for a specific

workload or not (blue if SL outperforms SpSS and red otherwise). I first compare the

SL approaches among themselves (Section 7.2.2.1) and then compare SL with SpSS

(Section 7.2.2.2).

7.2.2.1 Comparison of SL approaches

Table 20 shows that simpler regression models achieve lower 5-Fold MSE and

Q-Error than the deep learning (DL) [75] architecture. It is important to note that the

regression models are used out-of-the-box from scikit-learn library and are optimized

using loss functions that are specific to the model. On the other hand, DL model is

trained specific to the error metric at hand (MSE/MAPE/Q-Error) by incorporating

it into the loss function. Despite this additional advantage, DL shows better results

only w.r.t. MAPE on several workloads. Overall, I can notice that polynomial

regression (PR) achieves the best results w.r.t. all the three error metrics on a

majority of workloads. The disadvantage of PR is that it uses polynomials of degree

2 to fit the model to cardinality prediction which may be too complex for simpler

workloads of fewer queries such as STATE-AREALM or STATE-AREAWATER where

it consistently incurs large errors w.r.t. all three metrics. Linear regression models

such as Lasso or vanilla LR and GBT perform better than PR on such workloads. LR

also incidentally incurs the least training and test latencies on a majority of workloads

as shown in Table 21, that is closely followed by PR.

200

7.2.2.2 SL vs. SpSS

Table 20 shows that the best SL contender outperforms SpSS on all the query

workloads except the high cardinality workloads of distance queries - AREALM

(high), AREAWATER (high) and NYCTaxiTrips (high) and a polygon workload

SyntheticPolygonsNYC (see Tables 16 to 19 for cardinalities). Upon these four

high cardinality workloads, SpSS has enough samples resulting in only 0% - 1.1% of

unanswered queries (see last column in Table 21) and low error. In terms of latency, I

can notice that SpSS is an unsupervised approach and incurs no training time but

its test time is greater than all the SL approaches. The reason for this is that SpSS

executes its queries on the samples at test time leading to a significant overhead as

compared to SL approaches all of which have a very low cardinality inference time.

The advantage of SL over sampling is that once a model is trained offline, it can

estimate cardinalities for any number of test queries with low latency.

However, the downside of supervised learning (SL) is its huge offline pre-processing

time incurred from executing 80% training set of queries on the entire point table, as

compared to SpSS which executes 20% test set of queries on 1% sampled points but

in an online manner (see query execution time in Table 21). To reduce this offline

time and pre-executed %queries, I use active learning (AL) which selects a batch of

ambiguous queries in each AL iteration.

7.2.3 Evaluation of Active Learning

I first evaluate the effectiveness of hybRID on each regression model compared to the

baseline example (query) selectors. Subsequently, I compare various regression models

201

1 10 19 28 37 46 55 64 73 82 91 100
% Labels (Query Cardinalities)

0.0e+00

2.0e-02

4.0e-02

6.0e-02

8.0e-02

1.0e-01

1.2e-01 QBC-2
QBC-10
EMCM-2

EMCM-10
Greedy
hybRID

(a) Neural Networks

1 10 19 28 37 46 55 64 73 82 91 100
% Labels (Query Cardinalities)

1.40e-08

1.50e-08

1.60e-08

1.70e-08

1.80e-08

1.90e-08

2.00e-08

2.10e-08
QBC-2
QBC-10
EMCM-2

EMCM-10
Greedy
hybRID

(b) Linear Regression

1 10 19 28 37 46 55 64 73 82 91 100
% Labels (Query Cardinalities)

1.46e-08

1.48e-08

1.50e-08

1.52e-08

1.54e-08

1.56e-08

1.58e-08
QBC-2
QBC-10
EMCM-2

EMCM-10
Greedy
hybRID

(c) Lasso

1 10 19 28 37 46 55 64 73 82 91 100
% Labels (Query Cardinalities)

0.00e+00

5.00e-07

1.00e-06

1.50e-06

2.00e-06

2.50e-06 QBC-2
QBC-10
EMCM-2

EMCM-10
Greedy
hybRID

(d) Polynomial Regression

1 10 19 28 37 46 55 64 73 82 91 100
% Labels (Query Cardinalities)

1.44e-08

1.46e-08

1.48e-08

1.50e-08

1.52e-08

1.54e-08 QBC-2
QBC-10
EMCM-2

EMCM-10
Greedy
hybRID

(e) Gradient Boosting Trees

Figure 58: Evaluating Active Learning Selectors upon ZCTA-AREALM - Progressive
MSE (Y-axis) vs. %Queries (X-axis).

in conjunction with hybRID and the %queries executed by this best combination to

achieve a convergent progressive error. Finally, I compare active learning (AL) against

supervised learning (SL) w.r.t. 5-Fold errors.

7.2.3.1 Comparison of AL selectors

Figures 58 to 61 compare hybRID to the baseline selectors w.r.t. all the three

error metrics and user wait time on the ZCTA-AREALM workload. While I do not

see a noticeable difference among the selectors w.r.t. MSE (Figure 58), I can see that

hybRID outperforms the baseline selectors w.r.t. MAPE and Q-Error (Figures 59

and 60) in conjunction with linear regression models (LR, Lasso) and gradient boosting

trees (GBT). hybRID achieves its best MAPE and Q-Error with less than 20% of the

202

1 10 19 28 37 46 55 64 73 82 91100
% Labels (Query Cardinalities)

0

20

40

60

80

100 QBC-2
QBC-10
EMCM-2

EMCM-10
Greedy
hybRID

(a) Neural Networks

1 10 19 28 37 46 55 64 73 82 91100
% Labels (Query Cardinalities)

1.0

1.5

2.0

2.5

3.0

3.5 QBC-2
QBC-10
EMCM-2

EMCM-10
Greedy
hybRID

(b) Linear Regression

1 10 19 28 37 46 55 64 73 82 91100
% Labels (Query Cardinalities)

1.5

2.0

2.5

3.0

3.5
QBC-2
QBC-10
EMCM-2

EMCM-10
Greedy
hybRID

(c) Lasso

1 10 19 28 37 46 55 64 73 82 91100
% Labels (Query Cardinalities)

1

2

3

4

5

6

7 QBC-2
QBC-10
EMCM-2

EMCM-10
Greedy
hybRID

(d) Polynomial Regression

1 10 19 28 37 46 55 64 73 82 91100
% Labels (Query Cardinalities)

1.5

2.0

2.5

3.0

3.5
QBC-2
QBC-10
EMCM-2

EMCM-10
Greedy
hybRID

(e) Gradient Boosting Trees

Figure 59: Evaluating Active Learning Selectors upon ZCTA-AREALM - Progressive
MAPE (Y-axis) vs. %Queries (X-axis).

query cardinalities. On the latency front, it is interesting to see that although hybRID

attempts to approximate greedy selection through clustering, the former outperforms

the latter significantly w.r.t. user wait time (Figure 61) while being comparable to

QBC and EMCM. The latency pattern of neural networks (Figure 61a) is distinctive

from regression models (Figures 61b to 61e) because training committees of neural

networks takes longer compared to greedy selection as the training set gets bigger.

Figures 62 and 63 show an ablation study which varies #clusters used by hybRID

from 2 to 200. The adaptive variant (Ref Section 7.1.3.1) starts with 200 clusters

in the first AL iteration and by the time it exhausts half of the unexecuted queries,

#clusters uniformly reduces to 2 clusters and stays constant thereafter. Note that

increasing #clusters beyond 20 takes longer latency but does not reduce the MAPE

error further (I plot MAPE as it is the most discriminative metric). Figure 64 fixes

203

1 10 19 28 37 46 55 64 73 82 91100
% Labels (Query Cardinalities)

1.0

1.1

1.2

1.3

1.4

1.5 QBC-2
QBC-10
EMCM-2

EMCM-10
Greedy
hybRID

(a) Neural Networks

1 10 19 28 37 46 55 64 73 82 91 100
% Labels (Query Cardinalities)

1.000045

1.000050

1.000055

1.000060

1.000065

1.000070

1.000075

1.000080

1.000085 QBC-2
QBC-10
EMCM-2

EMCM-10
Greedy
hybRID

(b) Linear Regression

1 10 19 28 37 46 55 64 73 82 91 100
% Labels (Query Cardinalities)

1.000050

1.000055

1.000060

1.000065

1.000070

1.000075 QBC-2
QBC-10
EMCM-2

EMCM-10
Greedy
hybRID

(c) Lasso

1 10 19 28 37 46 55 64 73 82 91 100
% Labels (Query Cardinalities)

1.000040

1.000060

1.000080

1.000100

1.000120

1.000140

1.000160

1.000180

1.000200
QBC-2
QBC-10
EMCM-2

EMCM-10
Greedy
hybRID

(d) Polynomial Regression

1 10 19 28 37 46 55 64 73 82 91 100
% Labels (Query Cardinalities)

1.000050

1.000053

1.000055

1.000058

1.000060

1.000063

1.000065

1.000068

1.000070 QBC-2
QBC-10
EMCM-2

EMCM-10
Greedy
hybRID

(e) Gradient Boosting Trees

Figure 60: Evaluating Active Learning Selectors upon ZCTA-AREALM - Progressive
Q-Error (Y-axis) vs. %Queries (X-axis).

the default #clusters to 20 and varies the cluster selection heuristic between diversity,

size, and a weighted combination of both (0.5 weight to each heuristic). I notice that

cluster diversity dominates the other criteria and hence I set the default criterion to

diversity. I did not observe a significant latency variation among these three heuristics.

From Figures 58 to 61 where I compared query selectors on the ZCTA-AREALM

workload, I concluded that the most distinctive error metric which can differentiate

various query selectors from each other is MAPE. I also observed the distinction among

various query selectors w.r.t. MAPE significantly upon the simpler regression models

such as Linear Regression (LR), Lasso and Gradient Boosting Trees (GBT). Following

this observation, I choose LR as the default regression model and MAPE as the error

metric to compare query selectors on all the range and distance query workloads, not

just confined to ZCTA-AREALM. Figure 65 shows how the query selectors, QBC-2,

204

1 10 19 28 37 46 55 64 73 82 91100
% Labels (Query Cardinalities)

100

101

102

103

104

Us
er
 W
ai
t T

im
e
(s
ec
, l
og
-s
ca
le
)

QBC-2
QBC-10
EMCM-2

EMCM-10
Greedy
hybRID

(a) Neural Networks

1 10 19 28 37 46 55 64 73 82 91 100
% Labels (Query Cardinalities)

10−3

10−2

10−1

100

101

102

Us
er
 W

ai
t T

im
e
(s
e

, l
og

-s
ca

le
)

QBC-2
QBC-10
EMCM-2

EMCM-10
Greedy
hybRID

(b) Linear Regression

1 10 19 28 37 46 55 64 73 82 91 100
% Labels (Query Cardinalities)

10−3

10−2

10−1

100

101

102

Us
er
 W

ai
t T

im
e
(s
e

, l
og

-s
ca

le
)

QBC-2
QBC-10
EMCM-2

EMCM-10
Greedy
hybRID

(c) Lasso

1 10 19 28 37 46 55 64 73 82 91 100
% Labels (Query Cardinalities)

10−2

10−1

100

101

102

Us
er
 W

ai
t T

im
e
(s
e

, l
og

-s
ca

le
)

QBC-2
QBC-10
EMCM-2

EMCM-10
Greedy
hybRID

(d) Polynomial Regression

1 10 19 28 37 46 55 64 73 82 91 100
% Labels (Query Cardinalities)

10−1

100

101

102

103

Us
er
 W

ai
t T

im
e
(s
e

, l
og

-s
ca

le
) QBC-2

QBC-10
EMCM-2

EMCM-10
Greedy
hybRID

(e) Gradient Boosting Trees

Figure 61: Evaluating Active Learning Selectors on ZCTA-AREALM - User Wait
Time in Log-Scale (Y-axis) vs. %Queries (X-axis).

EMCM-2 and hybRID compare with each other upon the range query workloads,

whereas Figure 66 evaluates these query selectors on the distance workloads. Note

that I use a default ensemble (committee) of 2 models also for hybRID similarly to the

baselines of QBC and expected model change maximization (EMCM) that I compare

against.

Range Queries - A general pattern I notice is that hybRID outperforms the

baselines and achieves an earliest convergence to the least possible error upon the low

and medium cardinality workloads as compared to the high cardinality workloads. As I

can notice from the workloads of ZCTA-AREALM (Figure 65a), COUNTY-AREALM

(Figure 65b), ZCTA-AREAWATER (Figure 65d) and COUNTY-AREAWATER (Fig-

ure 65e), hybRID performs impressively as compared to the STATE-AREALM,

STATE-AREAWATER (Figures 65c and 65f) and the NYCTaxiTrips (Figure 65g)

205

1 10 19 28 37 46 55 64 73 82 91100
% Labels (Query Cardinalities)

0

20

40

60

80

100 hybRID-2
hybRID-20
hybRID-200
hybRID-200-Adaptive

(a) Neural Networks

1 10 19 28 37 46 55 64 73 82 91100
% Labels (Query Cardinalities)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5 hybRID-2
hybRID-20
hybRID-200
hybRID-200-Adaptive

(b) Linear Regression

1 10 19 28 37 46 55 64 73 82 91 100
% Labels (Query Cardinalities)

5

10

15

20
hybRID-2
hybRID-20
hybRID-200
hybRID-200-Adaptive

(c) Lasso

1 10 19 28 37 46 55 64 73 82 91100
% Labels (Query Cardinalities)

2

4

6

8

10

12

14 hybRID-2
hybRID-20
hybRID-200
hybRID-200-Adaptive

(d) Polynomial Regression

1 10 19 28 37 46 55 64 73 82 91100
% Labels (Query Cardinalities)

5

10

15

20
hybRID-2
hybRID-20
hybRID-200
hybRID-200-Adaptive

(e) Gradient Boosting Trees

Figure 62: Varying #Clusters in hybRID upon ZCTA-AREALM - Progressive MAPE
(Y-axis) vs. %Queries (X-axis).

workloads. Upon the STATE-AREALM and STATE-AREAWATER workloads, I have

fewer queries in total (56) and the distinction among all the query selectors is very

little in such a case, as all of them achieve convergence with fewer than 10% queries.

NYCTaxiTrips, on the other hand, is a synthetic workload created using polygons with

randomly-chosen vertices whose distribution is more difficult to learn as compared to

that of the real workloads. In such a case, I see that hybRID is second in performance

to a greedy selection baseline. As mentioned earlier in Section 7.1.3, hybRID is an

approximator to the greedy selection baseline in picking diverse queries. Instead

of comparing the feature vectors with each other using greedy selection heuristic

which can consume extremely long latencies as shown in Figure 61, hybRID resorts to

clustering which can relatively quickly identify the diverse queries among the workload.

Distance Queries - Among the distance queries too, I observe a better perfor-

206

1 10 19 28 37 46 55 64 73 82 91100
% Labels (Query Cardinalities)

100

101

102

103

hybRID-2
hybRID-20
hybRID-200
hybRID-200-Adaptive

(a) Neural Networks

1 10 19 28 37 46 55 64 73 82 91100
% Labels (Que % Ca dinalities)

10−1

100

101

h%bRID-2
hybRID-20
hybRID-200
hybRID-200-Adaptive

(b) Linear Regression

1 10 19 28 37 46 55 64 73 82 91100
% Labels (Query Cardinalities)

100

101

102

hybRID-2
hybRID-20
hybRID-200
hybRID-200-Adaptive

(c) Lasso

1 10 19 28 37 46 55 64 73 82 91100
% Labels (Que % Ca dinalities)

10−1

100

101

h%bRID-2
hybRID-20
hybRID-200
hybRID-200-Adaptive

(d) Polynomial Regression

1 10 19 28 37 46 55 64 73 82 91100
% Labels (Query Cardinalities)

100

101

102

hybRID-2
hybRID-20
hybRID-200
hybRID-200-Adaptive

(e) Gradient Boosting Trees

Figure 63: Varying #Clusters in hybRID on ZCTA-AREALM - User Wait Time in
seconds (log-scale Y-axis) vs. %Queries (X-axis).

mance of hybRID upon the low and medium radius (cardinality) workloads. Upon

AREALM (Low), AREALM (Medium), AREAWATER (Low) and NYCTaxiTrips

(Medium) workloads, hybRID and greedy selection outperform the remaining selectors.

EMCM seems to work better on the high cardinality workloads. This is again an

interesting result because hybRID incorporates EMCM to select examples (queries)

within the most diverse cluster that it identifies. Nevertheless, this application of

EMCM to detect the queries that maximally change the model is still locally done

upon the most distinctive cluster alone in the case of hybRID. When globally applied

across the entire workload, EMCM outperforms all other selectors upon the high

cardinality datasets.

This discussion brings us to an interesting premise that greedy selection is more

important for range query workloads whereas expected model change benefits the

207

1 10 19 28 37 46 55 64 73 82 91100
% Labels (Query Cardinalities)

0

500

1000

1500

2000 size+diversity
size
diversity

(a) Neural Networks

1 10 19 28 37 46 55 64 73 82 91100
% Labels (Query Cardinalities)

2

4

6

8 size+diversity
size
diversity

(b) Linear Regression

1 10 19 28 37 46 55 64 73 82 91100
% Labels (Query Cardinalities)

2

3

4

5

6

7

8 size+diversity
size
diversity

(c) Lasso

1 10 19 28 37 46 55 64 73 82 91100
% Labels (Query Cardinalities)

2

4

6

8 size+diversity
size
diversity

(d) Polynomial Regression

1 10 19 28 37 46 55 64 73 82 91100
% Labels (Query Cardinalities)

2

3

4

5

6

7

8 size+diversity
size
diversity

(e) Gradient Boosting Trees

Figure 64: hybRID variants w.r.t. cluster size & diversity on ZCTA-AREALM -
Progressive MAPE (Y-axis) vs. %Queries (X-axis).

distance workloads. Since my hybRID is a combination of EMCM (model-dependent)

and greedy (query-dependent) heuristics, I see that it outperforms all the selector

baselines conclusively on 8 out of 16 range and distance workloads. On the remaining

workloads which have relatively high cardinalities, it closely tails the best-performing

selectors (greedy for range queries and EMCM for distance queries).

7.2.3.2 Comparison of regression models

I use hybRID as the default query selector and compared all the regression models

upon each query workload. The best-performing regression model in conjunction with

hybRID upon each query workload is shown as the Best AL Method in Table 22.

208

1 10 19 28 37 46 55 64 73 82 91100
% Labels (Query Cardinalities)

1.0

1.5

2.0

2.5

3.0

3.5 QBC-2
EMCM-2

Greedy
hybRID

(a) ZCTA-AREALM

1 10 19 28 37 46 55 64 73 82 91100
% Labels (Query Cardinalities)

1

2

3

4

5
QBC-2
EMCM-2

Greedy
hybRID

(b) COUNTY-AREALM

1 10 19 28 37 46 55 64 73 82 91100
% Labels (Query Cardinalities)

0

10

20

30

40

50

60

70
QBC-2
EMCM-2

Greedy
hybRID

(c) STATE-AREALM

1 10 19 28 37 46 55 64 73 82 91100
% Labels (Query Cardinalities)

5

10

15

20

25

30 QBC-2
EMCM-2

Greedy
hybRID

(d) ZCTA-AREAWATER

1 10 19 28 37 46 55 64 73 82 91 100
% Labels (Query Cardinalities)

4

5

6

7

8

9

QBC-2
EMCM-2

Greedy
hybRID

(e) COUNTY-
AREAWATER

1 10 19 28 37 46 55 64 73 82 91100
% Labels (Query Cardinalities)

0

500

1000

1500

2000 QBC-2
EMCM-2

Greedy
hybRID

(f) STATE-AREAWATER

1 10 19 28 37 46 55 64 73 82 91100
% Labels (Query Cardinalities)

30

40

50

60

70 QBC-2
EMCM-2

Greedy
hybRID

(g) NYCTaxiTrips

Figure 65: Evaluating AL Selectors with Linear Regression on Range Queries -
Progressive MAPE (Y-axis) vs. %Queries (X-axis).

Interestingly, I can see that deep learning (DL) when used along with hybRID

outperforms regression models w.r.t. MAPE, whereas simpler regression models

outperform DL w.r.t. MSE and Q-Error. This high level observation about model

sensitivity to the error metric used for evaluation is consistent with my findings

reported for supervised learning in Section 7.2.2.1. Table 22 also shows the minimum

209

1 10 19 28 37 46 55 64 73 82 91100
% Labels (Query Cardinalities)

0.4

0.6

0.8

1.0

1.2
QBC-2
EMCM-2

Greedy
hybRID

(a) AREALM (Low Radius)

1 10 19 28 37 46 55 64 73 82 91100
% Labels (Query Cardinalities)

5

10

15

20 QBC-2
EMCM-2

Greedy
hybRID

(b) AREALM (Medium Radius)

1 10 19 28 37 46 55 64 73 82 91 100
% Labels (Query Cardinalities)

0.145

0.150

0.155

0.160

0.165

0.170 QBC-2
EMCM-2

Greedy
hybRID

(c) AREALM (High Radius)

1 10 19 28 37 46 55 64 73 82 91100
% Labels (Query Cardinalities)

0.5

1.0

1.5

2.0

2.5

3.0 QBC-2
EMCM-2

Greedy
hybRID

(d) AREAWATER (Low Ra-
dius)

1 10 19 28 37 46 55 64 73 82 91100
% Labels (Query Cardinalities)

5

10

15

20
QBC-2
EMCM-2

Greedy
hybRID

(e) AREAWATER (Medium Ra-
dius)

1 10 19 28 37 46 55 64 73 82 91100
% Labels (Query Cardinalities)

0.6

0.8

1.0

1.2

1.4

1.6

1.8
QBC-2
EMCM-2

Greedy
hybRID

(f) AREAWATER (High Ra-
dius)

1 10 19 28 37 46 55 64 73 82 91100
% Labels (Query Cardinalities)

2.5

5.0

7.5

10.0

12.5

15.0 QBC-2
EMCM-2

Greedy
hybRID

(g) NYCTaxiTrips (Low Ra-
dius)

1 10 19 28 37 46 55 64 73 82 91 100
% Labels (Query Cardinalities)

10

20

30

40

QBC-2
EMCM-2

Greedy
hybRID

(h) NYCTaxiTrips (Medium Ra-
dius)

1 10 19 28 37 46 55 64 73 82 91100
% Labels (Query Cardinalities)

4

5

6

7
QBC-2
EMCM-2

Greedy
hybRID

(i) NYCTaxiTrips (High Ra-
dius)

Figure 66: AL Selectors with Linear Regression on Distance Queries - Progressive
MAPE (Y-axis) vs. %Queries (X-axis).

%queries required by the best AL method to converge to the least possible progressive

error. Following are the high-level observations from Table 22.

• The quickest convergence to the least error happens upon progressive Q-Error metric

with 1.4% to 6.65% queries across all the query workloads. It is closely followed by

MAPE and MSE.

210

• There is a high correlation between MSE and MAPE metrics as the %queries required

for convergence is similar for these two metrics across several query workloads.

• Query workloads which contain the least #queries, typically have slow conver-

gence and require high %queries (80% for STATE-AREALM and 13% for STATE-

AREWATER).

• Query workloads that have low cardinalities typically have quicker convergence than

their high cardinality counterparts. Although this pattern is not always maintained

in the distance query workloads, it is strictly maintained among the range query

workloads across all the error metrics.

7.2.3.3 AL vs. SL

In order to compare active learning (AL) with supervised learning (SL) in a fair

and effective manner, I first pick the best-performing SL model from Table 20 for

each query workload w.r.t. each error metric. I use that best SL model in conjunction

with hybRID and run AL to find the least 5-Fold error that this combination can

achieve. I also record the %queries required by this combination. Table 23 shows that

in all the cases, I can achieve an error comparable to or lesser than what supervised

learning achieves, using active learning and most importantly, with fewer #queries.

As mentioned before, SL uses 80% of the queries for training upon all the datasets

to achieve its best error, but AL requires far fewer queries (see Table 23). The best

results are again obtained upon the Q-Error metric, where AL requires 1.3%-60%

queries across all the 16 workloads to achieve a 5-Fold error comparable to what SL

achieves using 80% of the queries.

211

7.2.4 Discussion

In this section, I first perform a cost-benefit analysis to verify if active learning

truly surpasses supervised learning for spatial cardinality estimation. Subsequently, I

provide guidelines to practitioners based on the findings in my experiments.

7.2.4.1 Cost-Benefit Analysis

Most AL and crowdsourcing works [51, 48, 150, 96, 126] are targeted towards

an end goal of reducing #labels sought from the oracle. Table 23 shows that AL

enables learning spatial cardinality estimation models that need fewer queries than

SL. However, in this case, I also need to know if the savings in %queries shown in

Table 23 translate into tangible latency benefits. Therefore, I compare the overall

latency expended by AL upon user wait time, ALWait (for cumulative re-training

of the model and query selection), and execution of the cumulative set of selected

queries across all AL iterations, ALExec, against the overall latency expended by SL

which is the sum of the model training latency, SLTrain, and the execution latency for

80% training queries, SLExec. Here I are also implicitly checking if the reduction in

query execution latency (benefit) achieved by AL outweighs the cumulative model

re-training and query selection time (cost) incurred by AL. The overall %Gain of AL

over SL in Table 23 is computed as:

((SLTrain + SLExec)− (ALWait + ALExec)) ∗ 100

(SLTrain + SLExec)
(7.1)

Table 24 shows that AL achieves a substantial latency gain of 25%-98% and 7%-76%

against SL on all the 16 workloads while using Q-Error and MSE as the evaluation

metrics. The latency gain is 6% to 98% on 11 out of 16 workloads while using MAPE

212

as the evaluation metric. I highlighted the five workloads where AL underperforms in

red color in Table 24. Incidentally in all the five cases, deep learning (DL) models

are used whose long training times negate the gain obtained on the query execution

latency.

7.2.4.2 Guidelines to Practitioners

Following are my findings.

• Spatial queries need to be represented using simple, yet effective feature vectors

which encode the topological information (geo-coordinates) and distance parameters

as features.

• For applications which have access to huge user query repositories, training an offline

regression model helps yield low cardinality inference latencies. Sampling-based

techniques may be used only when such repositories are unavailable or all the test

queries have high cardinalities and long inference times are acceptable.

• Simpler regression models with low training latencies are preferred over complex

DL models along with spatially-aware, hybrid AL selectors that are both model-

and query-dependent.

• Although MAPE is highly discriminative, Q-Error is highly consistent with other

metrics and I also observed the effectiveness of AL more prominently using Q-Error

which is frequently used for cardinality estimation. MSE is highly sensitive to

absolute cardinality values and is moderately discriminative.

213

Query Workload Mean Squared Error (MSE)
DL LR Lasso PR GBT SpSS

ZCTA-AREALM 0.0009 1.35E-08 1.45E-08 1.32E-08 1.44E-08 0.23
COUNTY-AREALM 0.0016 4.75E-07 5.06E-07 0.00108 5.01E-07 0.16
STATE-AREALM 0.0434 1.96E-03 4.90E-04 40.5 4.83E-04 0.015

ZCTA-AREAWATER 0.0006 2.10E-08 2.33E-08 1.98E-08 2.32E-08 0.15
COUNTY-AREAWATER 0.0023 4.93E-07 4.23E-07 0.00594 4.20E-07 0.04
STATE-AREAWATER 0.0248 5.86E-03 1.5E-03 252 1.51E-03 0.015
SyntheticPolygons-NYC 0.0287 0.02886 0.0289 0.01448 0.0283 0.01
AREALM (Low Radius) 0.0141 2.89E-10 3.02E-10 2.83E-10 2.99E-10 0.25

AREALM (Medium) 0.0123 1.37E-06 3.58E-06 8.62E-07 3.47E-06 0.1
AREALM (High) 0.011 6.68E-03 6.67E-03 6.04E-03 6.89E-03 1.1E-06

AREAWATER (Low) 0.0114 2.58E-12 3.14E-12 2.49E-12 3.1E-12 0.24
AREAWATER (Medium) 0.01 8.81E-07 3.96E-06 4.59E-07 3.82E-06 0.02

AREAWATER (High) 0.0045 0.0016 0.0033 1.9E-04 0.02 2.9E-06
NYCTaxiTrips (Low) 0.0122 1.24E-09 1.42E-09 1.19E-09 1.4E-09 0.24

NYCTaxiTrips (Medium) 0.0098 4.5E-04 1.03E-03 3.48E-04 0.001 0.02
NYCTaxiTrips (High) 0.02 0.025 0.09 0.013 0.09 0.001

Query Workload Mean Absolute Percentage Error (MAPE)
DL LR Lasso PR GBT SpSS

ZCTA-AREALM 15.8167 1.84 2.23 1.62 2.23 2.1E+04
COUNTY-AREALM 0.7678 1.93 2.31 1.579 2.29 2.94E+03
STATE-AREALM 1.9198 3.97 6.2 104 5.8 61.1

ZCTA-AREAWATER 115.2279 11.6 18.7 9.38 18.6 1.4E+05
COUNTY-AREAWATER 359.1596 7.93 7.68 8.29 7.63 5.6E+03
STATE-AREAWATER 3 239 95.8 3.5E+03 104 1.8E+03
SyntheticPolygons-NYC 0.9971 27.76 27.92 17.9 27.72 114
AREALM (Low Radius) 155.39 0.53 0.55 0.51 0.55 5.5E+04

AREALM (Medium) 2386 7.11 15.5 3.73 15.2 4.4E+03
AREALM (High) 0.036 0.15 0.15 0.15 0.15 8E-04

AREAWATER (Low) 2.9E+05 0.95 1.24 0.83 1.23 7.2E+05
AREAWATER (Medium) 0.73 8.89 27.9 7.66 27.4 5.1E+03

AREAWATER (High) 0.14 1.1 0.56 0.18 3.38 0.016
NYCTaxiTrips (Low) 1 1.4 1.73 1.23 1.72 6.4E+04

NYCTaxiTrips (Medium) 0.99 36.1 75.2 47.2 73.9 1.17E+03
NYCTaxiTrips (High) 0.51 5.5 12.05 6.75 11.88 4.21
Query Workload Mean Q-Error

DL LR Lasso PR GBT SpSS
ZCTA-AREALM 1.0115 1.0001 1.0001 1 1.0001 1.6

COUNTY-AREALM 1.0107 1.0003 1.0003 1.002 1.0003 1.42
STATE-AREALM 1.1211 1.02 1.02 7.10E+17 1.02 1.04

ZCTA-AREAWATER 1.0102 1.0001 1.0001 1.0001 1.0001 1.4
COUNTY-AREAWATER 1.0081 1.0004 1.0004 1.0249 1.0004 1.1
STATE-AREAWATER 1.1351 1.04 1.02 1.07E+47 1.02 1.04
SyntheticPolygons-NYC 1.1615 1.1491 1.1491 1.0969 1.1476 1.02
AREALM (Low Radius) 1.57 1 1 1 1 1.64

AREALM (Medium) 1.587 1.0008 1.0015 1.0006 1.0015 1.25
AREALM (High) 1.55 1.0338 1.0335 1.0347 1.0285 1.0003

AREAWATER (Low) 1.61 1 1 1 1 1.6
AREAWATER (Medium) 1.73 1.0007 1.0017 1.0005 1.0016 1.04

AREAWATER (High) 1.24 1.03 1.05 1.01 1.13 1.0013
NYCTaxiTrips (Low) 1.37 1 1 1 1 1.62

NYCTaxiTrips (Medium) 1.34 1.015 1.026 1.013 1.025 1.05
NYCTaxiTrips (High) 1.41 1.14 1.32 1.09 1.31 1.009

Table 20: 5-Fold Evaluation of Cardinality Estimation using Supervised Learning for
Range & Distance Queries (Quality).

214

Query Workload Training Time (seconds)
DL LR Lasso PR GBT

ZCTA-AREALM 135.61 0.0024 0.0035 0.00836 0.6777
COUNTY-AREALM 85.26 0.00078 0.00412 0.0019 0.069
STATE-AREALM 15.806 0.00069 0.00066 0.00065 0.0062

ZCTA-AREAWATER 139.808 0.00254 0.00586 0.00894 0.7564
COUNTY-AREAWATER 88.2653 0.000717 0.00418 0.00191 0.0666
STATE-AREAWATER 15.3567 0.000613 0.00066 0.000604 0.00624
SyntheticPolygons-NYC 44.5 0.0026 0.0122 0.0028 0.2179
AREALM (Low Radius) 64.17 6.59E-03 1.67E-02 1.80E-02 2.11

AREALM (Medium) 18.26 1.05E-03 8.99E-03 0.002 0.168
AREALM (High) 49.19 5.23E-04 5.61E-04 5.88E-04 1.88E-02

AREAWATER (Low) 61.3 0.0066 7.44E-03 0.018 2.07
AREAWATER (Medium) 17.8 9.9E-04 3.06E-03 0.002 0.172

AREAWATER (High) 49.54 5.1E-04 5.4E-04 6.2E-04 0.02
NYCTaxiTrips (Low) 68.2 0.0066 0.003 0.0175 1.7

NYCTaxiTrips (Medium) 17.5 0.001 1.37E-03 0.0023 0.168
NYCTaxiTrips (High) 47.73 0.0005 0.0005 0.0005 0.0185

Query Workload Test Time (seconds)
DL LR Lasso PR GBT SpSS

ZCTA-AREALM 0.00139 0.0009 0.0019 0.00049 0.002 360.43
COUNTY-AREALM 0.0004 0.000102 0.000189 0.0003 0.0003 44.52
STATE-AREALM 0.0001 0.00049 0.000139 0.0001 0.00016 0.969

ZCTA-AREAWATER 0.000796 0.001568 0.0106 0.000456 0.0027 1,025.58
COUNTY-AREAWATER 0.0004 9.21E-05 2.0E-05 3.3E-04 3.4E-04 121.72
STATE-AREAWATER 0.00018 0.0001187 0.0001373 0.000103 0.00018 19.04
SyntheticPolygons-NYC 6.12E-04 1.86E-04 2.78E-04 3.86E-04 7.3E-04 136.77
AREALM (Low Radius) 0.0006 5.18E-04 1.36E-02 2.31E-03 8.18E-03 2,163.09

AREALM (Medium) 3.46E-04 1.03E-04 2.03E-04 7.86E-04 1.03E-03 264.22
AREALM (High) 3.06E-04 8.08E-05 1.03E-04 9.41E-05 2.04E-04 27.19

AREAWATER (Low) 7.72E-04 8.2E-04 2.5E-03 6.69E-05 7.65E-03 3,104.51
AREAWATER (Medium) 3.72E-04 9.63E-05 2.18E-04 8.27E-04 1.04E-03 388.29

AREAWATER (High) 4.23E-04 8.12E-05 9.87E-05 1.01E-04 2.5E-04 57.68
NYCTaxiTrips (Low) 1.25E-03 0.0017 2.9E-03 3.78E-03 6.14E-03 2,218.69

NYCTaxiTrips (Medium) 4.34E-04 1.00E-04 2.88E-04 5.39E-04 9.4E-04 249.85
NYCTaxiTrips (High) 4.49E-04 8.19E-05 8.96E-05 8.72E-05 2.11E-04 23.46

Query Workload Query Execution Time #Unanswered Queries
ML Models SpSS SpSS

ZCTA-AREALM 2.3 hrs 359.44 sec 4,872 (91.49%)
COUNTY-AREALM 0.28 hrs 43.52 sec 422 (65.33%)
STATE-AREALM 15.62 sec 0.697 sec 1 (9.09%)

ZCTA-AREAWATER 22.34 hrs 1,008.35 sec 3,576 (60.44%)
COUNTY-AREAWATER 2.43 hrs 104.41 sec 96 (14.86%)
STATE-AREAWATER 151.51 sec 1.77 sec 1 (9.09%)
SyntheticPolygons-NYC 0.98 hrs 135.1 sec 22 (1.1%)
AREALM (Low Radius) 18.62 hrs 2,162 sec 19,680 (98.4%)

AREALM (Medium) 1.43 hrs 263.19 sec 773 (38.65%)
AREALM (High) 1.33 hrs 26.21 sec 0%

AREAWATER (Low) 134.83 hrs 3,087 sec 19,388 (96.94%)
AREAWATER (Medium) 24.45 hrs 370.9 sec 103 (5.15%)

AREAWATER (High) 4.3 hrs 39.78 sec 0%
NYCTaxiTrips (Low) 12.04 hrs 2,217 sec 19,238 (96.19%)

NYCTaxiTrips (Medium) 2.22 hrs 248.15 sec 1,847 (7.65%)
NYCTaxiTrips (High) 1.2 hrs 21.79 sec 0%

Table 21: 5-Fold Evaluation of Cardinality Estimation using Supervised Learning for
Range & Distance Queries (Latency).

215

Query Workload Mean Squared Error (MSE)
Best AL Method Error % Queries

ZCTA-AREALM PR + hybRID 1.36E-08 1.4%
COUNTY-AREALM LR + hybRID 4.78E-07 2.2 %
STATE-AREALM PR + hybRID 1.42E-04 80.36%

ZCTA-AREAWATER PR + hybRID 2.28E-08 1.37%
COUNTY-AREAWATER LR + hybRID 4.35E-07 2.2%
STATE-AREAWATER LR + hybRID 0.0016 5.36%
SyntheticPolygons-NYC PR + hybRID 0.02 1.57%
AREALM (Low Radius) PR + hybRID 2.9E-10 1.3%

AREALM (Medium) LR + hybRID 2.23E-06 1.57%
AREALM (High) DL + hybRID 0.0005 40.2%

AREAWATER (Low) PR + hybRID 2.67E-12 1.3%
AREAWATER (Medium) PR + hybRID 9.7E-07 20.62%

AREAWATER (High) PR + hybRID 0.00024 4.2%
NYCTaxiTrips (Low) PR + hybRID 1.19E-09 20.35%

NYCTaxiTrips (Medium) PR + hybRID 0.0007 2.84%
NYCTaxiTrips (High) PR + hybRID 0.016 4.2%
Query Workload Mean Absolute Percentage Error (MAPE)

Best AL Method Error % Queries
ZCTA-AREALM DL + hybRID 1.0 1.4%

COUNTY-AREALM DL + hybRID 0.8 2.2%
STATE-AREALM DL + hybRID 0.61 25%

ZCTA-AREAWATER DL + hybRID 1.0 1.37%
COUNTY-AREAWATER DL + hybRID 1.0 2.2%
STATE-AREAWATER DL + hybRID 1.44 12.96%
SyntheticPolygons-NYC DL + hybRID 1.02 7.92%
AREALM (Low Radius) LR + hybRID 0.52 3.84%

AREALM (Medium) DL + hybRID 1.03 1.57%
AREALM (High) DL + hybRID 0.0043 49.8%

AREAWATER (Low) Lasso + hybRID 0.38 1.3%
AREAWATER (Medium) DL + hybRID 0.74 9.19%

AREAWATER (High) DL + hybRID 0.174 4.2%
NYCTaxiTrips (Low) DL + hybRID 1.0 1.3%

NYCTaxiTrips (Medium) DL + hybRID 0.986 2.84%
NYCTaxiTrips (High) DL + hybRID 0.51 33%

Query Workload Mean Q-Error
Best AL Method Error % Queries

ZCTA-AREALM LR + hybRID 1.000048 1.4%
COUNTY-AREALM LR + hybRID 1.00029 2.2%
STATE-AREALM GBT + hybRID 1.017 5.35%

ZCTA-AREAWATER LR + hybRID 1.000058 1.37%
COUNTY-AREAWATER Lasso + hybRID 1.00038 2.2%
STATE-AREAWATER LR + hybRID 1.025 5.36%
SyntheticPolygons-NYC PR + hybRID 1.13 6.65%
AREALM (Low Radius) LR + hybRID 1.000007 1.3%

AREALM (Medium) LR + hybRID 1.001 1.57%
AREALM (High) GBT + hybRID 1.02 4.2%

AREAWATER (Low) LR + hybRID 1.000001 1.3%
AREAWATER (Medium) LR + hybRID 1.0013 1.57%

AREAWATER (High) PR + hybRID 1.013 4.2%
NYCTaxiTrips (Low) PR + hybRID 1.000028 1.3%

NYCTaxiTrips (Medium) PR + hybRID 1.016 1.57%
NYCTaxiTrips (High) PR + hybRID 1.093 4.2%

Table 22: Convergent Progressive Errors and %Queries using Best AL Methods for
Range & Distance Queries.

216

Query Workload Mean Squared Error (MSE)
Best SL+AL Error % Queries

ZCTA-AREALM PR + hybRID 1.32E-08 48.34%
COUNTY-AREALM LR + hybRID 4.73E-07 52.94%
STATE-AREALM GBT + hybRID 0.0005 12.17%

ZCTA-AREAWATER PR + hybRID 1.98E-08 35.59%
COUNTY-AREAWATER GBT + hybRID 4.2E-07 28.82%
STATE-AREAWATER Lasso + hybRID 1.5E-03 55.65%
SyntheticPolygons-NYC PR + hybRID 0.015 52.37%
AREALM (Low Radius) PR + hybRID 2.83E-10 64.8%

AREALM (Medium) PR + hybRID 9E-07 65.07%
AREALM (High) PR + hybRID 6.03E-03 72.6%

AREAWATER (Low) PR + hybRID 2.49E-12 49.56%
AREAWATER (Medium) PR + hybRID 4.64E-07 68.88%

AREAWATER (High) PR + hybRID 0.00024 47.4%
NYCTaxiTrips (Low) PR + hybRID 1.2E-09 24.16%

NYCTaxiTrips (Medium) PR + hybRID 3.53E-04 73.96%
NYCTaxiTrips (High) PR + hybRID 0.0134 57%

Query Workload Mean Absolute Percentage Error (MAPE)
Best SL+AL Error % Queries

ZCTA-AREALM PR + hybRID 1.37 1.38%
COUNTY-AREALM DL + hybRID 0.79 18.69%
STATE-AREALM DL + hybRID 1.07 34.78%

ZCTA-AREAWATER PR + hybRID 6.7 2.63%
COUNTY-AREAWATER GBT + hybRID 2.81 3.46%
STATE-AREAWATER DL + hybRID 1.05 76.52%
SyntheticPolygons-NYC DL + hybRID 0.9969 9.19%
AREALM (Low Radius) PR + hybRID 0.51 74.96%

AREALM (Medium) PR + hybRID 3.65 16.81%
AREALM (High) DL + hybRID 0.048 51%

AREAWATER (Low) PR + hybRID 0.834 71.15%
AREAWATER (Medium) DL + hybRID 0.95 23.16%

AREAWATER (High) DL + hybRID 0.144 12.6%
NYCTaxiTrips (Low) DL + hybRID 1 2.57%

NYCTaxiTrips (Medium) DL + hybRID 0.99 13%
NYCTaxiTrips (High) DL + hybRID 0.52 34.2%

Query Workload Mean Q-Error
Best SL+AL Error % Queries

ZCTA-AREALM PR + hybRID 1.000049 1.38%
COUNTY-AREALM LR + hybRID 1.0003 2.2%
STATE-AREALM GBT + hybRID 1.02 5.22%

ZCTA-AREAWATER PR + hybRID 1.00007 1.37%
COUNTY-AREAWATER GBT + hybRID 1.00038 2.2%
STATE-AREAWATER Lasso + hybRID 1.02 53.91%
SyntheticPolygons-NYC PR + hybRID 1.1 56.18%
AREALM (Low Radius) PR + hybRID 1.000007 1.3%

AREALM (Medium) PR + hybRID 1.0006 42.21%
AREALM (High) GBT + hybRID 1.034 22.2%

AREAWATER (Low) PR + hybRID 1.000001 1.3%
AREAWATER (Medium) PR + hybRID 1.00054 59.99%

AREAWATER (High) PR + hybRID 1.014 4.2%
NYCTaxiTrips (Low) PR + hybRID 1.000019 5.11%

NYCTaxiTrips (Medium) PR + hybRID 1.014 42.21%
NYCTaxiTrips (High) PR + hybRID 1.09 53.4%

Table 23: %Queries executed by hybRID to yield comparable 5-Fold Errors as best
Supervised Models in Table 20.

217

Query Workload SL (MSE) AL (MSE)
Train Exec Wait Exec %Gain

ZCTA-AREALM 0.008 sec 2.3 hrs 74.4 sec 1.4 hrs 38.23%
COUNTY-AREALM 0.0008 sec 0.28 hrs 28.98 sec 0.18 hrs 32.84%
STATE-AREALM 0.006 sec 15.62 sec 1.36 sec 2.38 sec 76.07%

ZCTA-AREAWATER 0.009 sec 22.34 hrs 61.23 sec 9.93 hrs 55.48%
COUNTY-AREAWATER 0.07 sec 2.43 hrs 18.31 sec 0.874 hrs 63.82%
STATE-AREAWATER 0.0007 sec 151.51 sec 8.08 sec 105.4 sec 25.1%
SyntheticPolygons-NYC 0.0028 sec 0.98 hrs 60.92 sec 0.64 hrs 32.9%
AREALM (Low Radius) 0.02 sec 18.62 hrs 181.19 sec 15.09 hrs 18.69%

AREALM (Medium) 0.002 sec 1.43 hrs 46.57 sec 1.16 hrs 17.98%
AREALM (High) 0.0006 sec 1.33 hrs 9.34 sec 1.2 hrs 9.58%

AREAWATER (Low) 0.018 sec 134.83 hrs 116.44 sec 83.53 hrs 38.02%
AREAWATER (Medium) 0.002 sec 24.45 hrs 50.07 sec 21.05 hrs 13.85%

AREAWATER (High) 0.0006 sec 4.3 hrs 6.9 sec 2.55 hrs 40.65%
NYCTaxiTrips (Low) 0.018 sec 12.04 hrs 90.92 sec 3.64 hrs 69.56%

NYCTaxiTrips (Medium) 0.002 sec 2.22 hrs 58.34 sec 2.05 hrs 6.93%
NYCTaxiTrips (High) 0.0005 sec 1.2 hrs 8.82 sec 0.86 hrs 28.13%
Query Workload SL (MAPE) AL (MAPE)

Train Exec Wait Exec %Gain
ZCTA-AREALM 0.008 sec 2.3 hrs 2.23 sec 0.04 hrs 98.23%

COUNTY-AREALM 85.26 sec 0.28 hrs 973.8 sec 0.06 hrs -8.83%
STATE-AREALM 15.81 sec 15.62 sec 275.54 sec 6.79 sec -798%

ZCTA-AREAWATER 0.009 sec 22.34 hrs 4.81 sec 0.74 hrs 96.7%
COUNTY-AREAWATER 0.07 sec 2.43 hrs 2.15 sec 0.11 hrs 95.45%
STATE-AREAWATER 15.36 sec 151.51 sec 0.33 hrs 144.93 sec -699%
SyntheticPolygons-NYC 0.0002 sec 0.98 hrs 1.23 hrs 0.11 hrs -36.74%
AREALM (Low Radius) 0.02 sec 18.62 hrs 196.93 sec 17.45 hrs 5.9%

AREALM (Medium) 0.002 sec 1.43 hrs 14.97 sec 0.3 hrs 78.7%
AREALM (High) 49.19 sec 1.33 hrs 0.52 hrs 0.85 hrs -1.43%

AREAWATER (Low) 0.018 sec 134.83 hrs 153.84 sec 119.92 hrs 11.03%
AREAWATER (Medium) 17.8 sec 24.45 hrs 396.58 sec 7.08 hrs 70.6%

AREAWATER (High) 49.54 sec 4.3 hrs 104.68 sec 0.68 hrs 83.56%
NYCTaxiTrips (Low) 68.2 sec 12.04 hrs 39.19 sec 0.39 hrs 96.7%

NYCTaxiTrips (Medium) 17.5 sec 2.22 hrs 1.07 hrs 0.36 hrs 35.73%
NYCTaxiTrips (High) 47.73 sec 1.2 hrs 0.26 hrs 0.52 hrs 35.71%

Query Workload SL (Q-Error) AL (Q-Error)
Train Exec Wait Exec %Gain

ZCTA-AREALM 0.008 sec 2.3 hrs 2.23 sec 0.04 hrs 98.23%
COUNTY-AREALM 0.0008 sec 0.28 hrs 1.16 sec 0.01 hrs 96.31%
STATE-AREALM 0.006 sec 15.62 sec 0.26 sec 1.02 sec 91.8%

ZCTA-AREAWATER 0.009 sec 22.34 hrs 2.32 sec 0.38 hrs 98.29%
COUNTY-AREAWATER 0.07 sec 2.43 hrs 1.14 sec 0.07 hrs 97.11%
STATE-AREAWATER 0.0007 sec 151.51 sec 7.81 sec 102.11 sec 27.5%
SyntheticPolygons-NYC 0.0028 sec 0.98 hrs 63.68 sec 0.69 hrs 27.79%
AREALM (Low Radius) 0.02 sec 18.62 hrs 3.93 sec 0.3 hrs 98.38%

AREALM (Medium) 0.002 sec 1.43 hrs 36.97 sec 0.76 hrs 46.14%
AREALM (High) 0.019 sec 1.33 hrs 8.75 sec 0.37 hrs 71.99%

AREAWATER (Low) 0.018 sec 134.83 hrs 6.21 sec 2.19 hrs 98.38%
AREAWATER (Medium) 0.002 sec 24.45 hrs 48 sec 18.33 hrs 24.98%

AREAWATER (High) 0.0006 sec 4.3 hrs 0.2 sec 0.23 hrs 94.64%
NYCTaxiTrips (Low) 0.018 sec 12.04 hrs 17.67 sec 0.77 hrs 93.56%

NYCTaxiTrips (Medium) 0.002 sec 2.22 hrs 45.37 sec 1.17 hrs 46.73%
NYCTaxiTrips (High) 0.0005 sec 1.2 hrs 8.38 sec 0.8 hrs 33.14%

Table 24: Cost-Benefit Analysis w.r.t. latencies for Active Learning vs. Supervised
Learning methods reported in Table 23.

218

Chapter 8

CONCLUSION AND FUTURE WORK

In this dissertation, I built and evaluated human-in-the-loop machine learning

(ML) systems for data integration and predictive analytics.

8.1 Human-in-the-loop Data Integration

I proposed the usage of active learning for both entity matching (EM) and ontology

(schema) matching for human-in-the-loop data integration to effectively query a human

oracle for the matching or non-matching labels of entity pairs or schema concept

pairs. I found that active learning upon learner-aware ensembles of tree-based models

achieves close to perfect progressive F1-scores on all the public entity matching datasets

I experimented with. My best active learning methods require fewer #labels for a

convergent F1-score than their supervised learning counterparts up until 10% labeling

noise. I also found that tree-based learners achieve high quality at the expense of

interpretability and applications where concise, highly precise EM rules are required

may still resort to rule-based learning.

In the case of ontology matching, my system Alfa for GNN-based semantic

schema alignment, proposes ontology-aware techniques for sample selection, label

propagation and semantic blocking. Exploiting the rich semantics in the underlying

schema substantially reduces the cost of human labeling of training data (27% to 82%)

as compared to other existing active learning baselines for ontology matching. Alfa

achieves this cost reduction while maintaining low sample selection times (in order of

219

a few seconds) and comparable schema matching quality (90% F1-score) to models

trained on the entire set of available training data.

In the future, I would like to explore the usage of generative models for data

integration that require zero labeled examples. I plan to evaluate such generative

models against active learning systems that I proposed in this thesis and alternative

baselines such as zeroER (Wu et al. [166]), and transfer learning for EM proposed

by Kasai et al. [70].

8.2 Human-in-the-loop Predictive Analytics

I proposed novel SQL query prediction and Business Intelligence (BI) query

recommendation algorithms to support predictive analytics in the context of human-

database interaction such as data exploration. I found that my proposed adaptation

of exact Q-Learning that builds an in-memory Q-table and a novel synthesis-based

RNN predictor for SQL queries surpass collaborative filtering baselines on predictive

quality, latency and memory consumption. For BI applications, my proposed two-step

approach for BI pattern recommendation enables training accurate prediction models

with less training data, achieves high quality recommendations in terms of diversity,

surprisingness amongst the predicted queries by utilizing semantic information from the

BI ontology and lowers the prediction latency, making BI-REC suitable for interactive

conversational systems. My experimental evaluation shows that BI-REC achieves an

F1-score of 0.83 for BI pattern recommendations and has up to 3× better diversity

score compared to a state-of-the-art exhaustive collaborative filtering baseline. My

user study further validates the effectiveness of BI-REC providing recommendations

with an average precision@3 of 91.90% across several different analysis tasks.

220

In order to enable quick query optimization and execution of the predicted queries

(as well as the user-issued queries) during a data exploration session, I have built an

ML-based cardinality estimator for spatial range and distance queries. I showed that

supervised learning (SL) not only incurs short cardinality estimation latencies but also

outperforms a spatially-aware stratified sampling baseline w.r.t. three error metrics,

MSE, MAPE and Q-Error, on 12 out of 16 query workloads created for 7 point and

polygon datasets. I showed the effectiveness of my proposed spatially-aware hybRID

query selector for active learning (AL) through two experimental settings - progressive

evaluation and 5-Fold cross-validated evaluation against SL. Besides showing that

AL using hybRID can achieve convergent progressive Q-Errors with only 1.4%-6.6%

of the unexecuted queries, I have also done a cost-benefit analysis that compares

the %gain in latency achieved by AL over SL. My experiments showed an overall

latency gain of 7%-76%, 25%-98% and 6%-98% while using MSE, Q-Error and MAPE

respectively as the error metrics to evaluate AL against SL. I also provided guidelines

to practitioners about the effectiveness of simple feature vector creation for queries,

preferred regression models and error metrics.

In the future, I will explore spatial join queries and the domain adaptation setting

for spatial cardinality estimation, where a regression model trained on query workload

from one domain is transferred to another domain for testing purposes. In the

context of query prediction, I will explore the usage of attention models for query

sequence prediction based on which I will preemptively execute queries that have

long-term utility and store their results in materialized views. I also plan to apply ML

algorithms to build self-managed databases which can tune several components in the

database engine such as indexing, buffer management, transaction processing, query

optimization and parallelized query execution based on the predicted query workload.

221

REFERENCES

[1] Ildar Absalyamov, Michael J. Carey, and Vassilis J. Tsotras. “Lightweight
Cardinality Estimation in LSM-based Systems”. In: Proceedings of the 2018
International Conference on Management of Data, SIGMOD Conference 2018,
Houston, TX, USA, June 10-15, 2018. 2018, pp. 841–855. url: https://doi.
org/10.1145/3183713.3183761.

[2] Abt-Buy. http://dbs.uni-leipzig.de/file/Abt-Buy.zip.

[3] Sameer Agarwal et al. “BlinkDB: Queries with Bounded Errors and Bounded
Response Times on Very Large Data”. In: Proceedings of the 8th ACM European
Conference on Computer Systems. EuroSys ’13. Prague, Czech Republic, 2013,
pp. 29–42.

[4] Charu C. Aggarwal et al. “Active Learning: A Survey”. In: Data Classification:
Algorithms and Applications. Ed. by Charu C. Aggarwal. CRC Press, 2014,
pp. 571–606. url: http://www.crcnetbase.com/doi/abs/10.1201/b17320-23.

[5] Ning An, Zhen-Yu Yang, and Anand Sivasubramaniam. “Selectivity Estimation
for Spatial Joins”. In: Proceedings of the 17th International Conference on Data
Engineering, April 2-6, 2001, Heidelberg, Germany. 2001, pp. 368–375. url:
https://doi.org/10.1109/ICDE.2001.914849.

[6] Paolo Atzeni et al. “Meta-Mappings for Schema Mapping Reuse”. In: Proc.
VLDB Endow. 12.5 (2019), pp. 557–569. url: http://www.vldb.org/pvldb/
vol12/p557-atzeni.pdf.

[7] M. Balcan, A. Beygelzimer, and J. Langford. “Agnostic Active Learning”. In:
ICML. 2006, pp. 65–72.

[8] Maria-Florina Balcan, Andrei Broder, and Tong Zhang. “Margin Based Active
Learning”. In: COLT. 2007, pp. 35–50.

[9] K. Bellare et al. “Active Sampling for Entity Matching”. In: KDD. 2012,
pp. 1131–1139.

[10] Alberto Belussi and Christos Faloutsos. “Estimating the Selectivity of Spatial
Queries Using the ’Correlation’ Fractal Dimension”. In: VLDB’95, Proceedings
of 21th International Conference on Very Large Data Bases, September 11-15,
1995, Zurich, Switzerland. 1995, pp. 299–310. url: http://www.vldb.org/conf/
1995/P299.PDF.

222

https://doi.org/10.1145/3183713.3183761
https://doi.org/10.1145/3183713.3183761
http://dbs.uni-leipzig.de/file/Abt-Buy.zip
http://www.crcnetbase.com/doi/abs/10.1201/b17320-23
https://doi.org/10.1109/ICDE.2001.914849
http://www.vldb.org/pvldb/vol12/p557-atzeni.pdf
http://www.vldb.org/pvldb/vol12/p557-atzeni.pdf
http://www.vldb.org/conf/1995/P299.PDF
http://www.vldb.org/conf/1995/P299.PDF

[11] Jacob Berlin and Amihai Motro. “Database Schema Matching Using Machine
Learning with Feature Selection”. In: Seminal Contributions to Information
Systems Engineering, 25 Years of CAiSE. Ed. by Janis A. Bubenko Jr. et al.
Springer, 2013, pp. 315–329. url: https://doi.org/10.1007/978-3-642-36926-
1_25.

[12] Max Berrendorf, Evgeniy Faerman, and Volker Tresp. “Active Learning for
Entity Alignment”. In: Advances in Information Retrieval - 43rd European
Conference on IR Research, ECIR 2021, Virtual Event, March 28 - April 1,
2021, Proceedings, Part I. Ed. by Djoerd Hiemstra et al. Vol. 12656. Lecture
Notes in Computer Science. Springer, 2021, pp. 48–62. url: https://doi.org/
10.1007/978-3-030-72113-8_4.

[13] Alina Beygelzimer, Sanjoy Dasgupta, and John Langford. “Importance
Weighted Active Learning”. In: ICML. 2009, pp. 49–56.

[14] BI-REC: Guided Data Analysis for Conversational Business Intelligence. 2022.
url: https://github.com/vamsikrishna1902/BI-REC-TR.git.

[15] scikit-learn developers (BSD License). Gradient Boosting Trees for Regression.
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.Gradien
tBoostingRegressor.html. 2007.

[16] scikit-learn developers (BSD License). Lasso. https://scikit-learn.org/stable/
modules/generated/sklearn.linear_model.Lasso.html. 2007.

[17] scikit-learn developers (BSD License). LinearRegression. https://scikit-learn.
org/stable/modules/generated/sklearn.linear_model.LinearRegression.html.
2007.

[18] scikit-learn developers (BSD License). Polynomial Regression. https://scikit-
learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatur
es.html. 2007.

[19] Robert Burbidge, Jem J. Rowland, and Ross D. King. “Active Learning for
Regression Based on Query by Committee”. In: Proceedings of the 8th Interna-
tional Conference on Intelligent Data Engineering and Automated Learning.
IDEAL’07. Birmingham, UK: Springer-Verlag, 2007, 209–218.

[20] Wenbin Cai, Muhan Zhang, and Ya Zhang. “Batch Mode Active Learning for
Regression With Expected Model Change”. In: IEEE Trans. Neural Networks
Learn. Syst. 28.7 (2017), pp. 1668–1681. url: https://doi.org/10.1109/TNNLS.
2016.2542184.

223

https://doi.org/10.1007/978-3-642-36926-1_25
https://doi.org/10.1007/978-3-642-36926-1_25
https://doi.org/10.1007/978-3-030-72113-8_4
https://doi.org/10.1007/978-3-030-72113-8_4
https://github.com/vamsikrishna1902/BI-REC-TR.git
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html
https://doi.org/10.1109/TNNLS.2016.2542184
https://doi.org/10.1109/TNNLS.2016.2542184

[21] Wenbin Cai, Ya Zhang, and Jun Zhou. “Maximizing Expected Model Change for
Active Learning in Regression”. In: 2013 IEEE 13th International Conference
on Data Mining. 2013, pp. 51–60.

[22] Balder ten Cate et al. “Active Learning of GAV Schema Mappings”. In: Pro-
ceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Prin-
ciples of Database Systems, Houston, TX, USA, June 10-15, 2018. Ed. by
Jan Van den Bussche and Marcelo Arenas. ACM, 2018, pp. 355–368. url:
https://doi.org/10.1145/3196959.3196974.

[23] Daniel Cer et al. Universal Sentence Encoder. 2018. arXiv: 1803.11175 [cs.CL].

[24] Nicolò Cesa-Bianchi et al. “A Linear Time Active Learning Algorithm for Link
Classification”. In: Advances in Neural Information Processing Systems 25: 26th
Annual Conference on Neural Information Processing Systems 2012. Proceedings
of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States. Ed. by
Peter L. Bartlett et al. 2012, pp. 1619–1627. url: https://proceedings.neurips.
cc/paper/2012/hash/bf62768ca46b6c3b5bea9515d1a1fc45-Abstract.html.

[25] Ugur Çetintemel et al. “Query Steering for Interactive Data Exploration”. In:
CIDR 2013, Sixth Biennial Conference on Innovative Data Systems Research,
Asilomar, CA, USA, January 6-9, 2013, Online Proceedings. 2013.

[26] Chengliang Chai et al. “Cost-Effective Crowdsourced Entity Resolution: A
Partial-Order Approach”. In: Proceedings of the 2016 International Conference
on Management of Data. SIGMOD ’16. San Francisco, California, USA: ACM,
2016, pp. 969–984. url: http://doi.acm.org/10.1145/2882903.2915252.

[27] Gloria Chatzopoulou, Magdalini Eirinaki, and Neoklis Polyzotis. “Query Recom-
mendations for Interactive Database Exploration”. In: Scientific and Statistical
Database Management, 21st International Conference, SSDBM 2009, New
Orleans, LA, USA, June 2-4, 2009, Proceedings. 2009, pp. 3–18.

[28] Surajit Chaudhuri and Raghav Kaushik. “Extending autocompletion to tolerate
errors”. In: Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2009, Providence, Rhode Island, USA, June
29 - July 2, 2009. 2009, pp. 707–718.

[29] Surajit Chaudhuri, Vivek R. Narasayya, and Ravishankar Ramamurthy. “Di-
agnosing Estimation Errors in Page Counts Using Execution Feedback”. In:
Proceedings of the 24th International Conference on Data Engineering, ICDE
2008, April 7-12, 2008, Cancún, Mexico. 2008, pp. 1013–1022. url: https:
//doi.org/10.1109/ICDE.2008.4497510.

224

https://doi.org/10.1145/3196959.3196974
https://arxiv.org/abs/1803.11175
https://proceedings.neurips.cc/paper/2012/hash/bf62768ca46b6c3b5bea9515d1a1fc45-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/bf62768ca46b6c3b5bea9515d1a1fc45-Abstract.html
http://doi.acm.org/10.1145/2882903.2915252
https://doi.org/10.1109/ICDE.2008.4497510
https://doi.org/10.1109/ICDE.2008.4497510

[30] Anfeng Cheng et al. “Deep Active Learning for Anchor User Prediction”. In:
Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019. Ed. by Sarit Kraus.
ijcai.org, 2019, pp. 2151–2157. url: https://doi.org/10.24963/ijcai.2019/298.

[31] Konstantina Christakopoulou, Filip Radlinski, and Katja Hofmann. “Towards
Conversational Recommender Systems”. In: Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing. KDD ’16. San Francisco, California, USA: Association for Computing
Machinery, 2016, 815–824. url: https://doi.org/10.1145/2939672.2939746.

[32] David Cohn, Les Atlas, and Richard Ladner. “Improving Generalization with
Active Learning”. In: Machine Learning (1994), pp. 201–221.

[33] Abhinandan Das, Johannes Gehrke, and Mirek Riedewald. “Approximation
Techniques for Spatial Data”. In: Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, Paris, France, June 13-18, 2004.
2004, pp. 695–706. url: https://doi.org/10.1145/1007568.1007646.

[34] Sanjib Das et al. “Falcon: Scaling Up Hands-Off Crowdsourced Entity Matching
to Build Cloud Services”. In: Proceedings of the 2017 ACM International
Conference on Management of Data. SIGMOD ’17. Chicago, Illinois, USA:
ACM, 2017, pp. 1431–1446. url: http://doi.acm.org/10.1145/3035918.3035960.

[35] Sanjoy Dasgupta. “Two Faces of Active Learning”. In: Theor. Comput. Sci.
412.19 (2011), pp. 1767–1781.

[36] Data Wrangler. https://vis.stanford.edu/wrangler/.

[37] Dong Deng et al. “META: An Efficient Matching-Based Method for Error-
Tolerant Autocompletion”. In: Proc. VLDB Endow. 9.10 (2016), pp. 828–839.

[38] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding”. In: Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers). Minneapolis,
Minnesota: Association for Computational Linguistics, June 2019, pp. 4171–
4186. url: https://www.aclweb.org/anthology/N19-1423.

[39] DiffPool Implementation for PyTorch using DGL Library. 2019. url: https:
//github.com/dmlc/dgl/tree/master/examples/pytorch/diffpool.

225

https://doi.org/10.24963/ijcai.2019/298
https://doi.org/10.1145/2939672.2939746
https://doi.org/10.1145/1007568.1007646
http://doi.acm.org/10.1145/3035918.3035960
https://vis.stanford.edu/wrangler/
https://www.aclweb.org/anthology/N19-1423
https://github.com/dmlc/dgl/tree/master/examples/pytorch/diffpool
https://github.com/dmlc/dgl/tree/master/examples/pytorch/diffpool

[40] Kyriaki Dimitriadou, Olga Papaemmanouil, and Yanlei Diao. “AIDE: An Active
Learning-Based Approach for Interactive Data Exploration”. In: IEEE TKDE
28.11 (2016), pp. 2842–2856.

[41] Kyriaki Dimitriadou, Olga Papaemmanouil, and Yanlei Diao. “Explore-by-
example: An Automatic Query Steering Framework for Interactive Data Explo-
ration”. In: Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data. SIGMOD ’14. Snowbird, Utah, USA, 2014, pp. 517–528.

[42] Magdalini Eirinaki and Sweta Patel. “QueRIE reloaded: Using matrix factoriza-
tion to improve database query recommendations”. In: 2015 IEEE International
Conference on Big Data, Big Data 2015, Santa Clara, CA, USA, October 29 -
November 1, 2015. 2015, pp. 1500–1508.

[43] Magdalini Eirinaki et al. “QueRIE: Collaborative Database Exploration”. In:
IEEE Trans. Knowl. Data Eng. 26.7 (2014), pp. 1778–1790.

[44] Ori Bar El, Tova Milo, and Amit Somech. “Automatically Generating Data
Exploration Sessions Using Deep Reinforcement Learning”. In: Proceedings
of the 2020 International Conference on Management of Data, SIGMOD
Conference 2020, online conference [Portland, OR, USA], June 14-19, 2020.
2020, pp. 1527–1537.

[45] Ahmed Eldawy, Louai Alarabi, and Mohamed F. Mokbel. “Spatial Partitioning
Techniques in SpatialHadoop”. In: Proc. VLDB Endow. 8.12 (2015), 1602–1605.
url: https://doi.org/10.14778/2824032.2824057.

[46] Ahmed Eldawy and Mohamed F. Mokbel. Real Spatial Datasets. http : //
spatialhadoop.cs.umn.edu/datasets.html. 2015.

[47] Ahmed Eldawy and Mohamed F. Mokbel. “SpatialHadoop: A MapReduce
Framework for Spatial Data”. In: 31st IEEE International Conference on Data
Engineering, ICDE 2015, Seoul, South Korea, April 13-17, 2015. 2015, pp. 1352–
1363. url: http://dx.doi.org/10.1109/ICDE.2015.7113382.

[48] Donatella Firmani, Barna Saha, and Divesh Srivastava. “Online Entity Res-
olution Using an Oracle”. In: Proc. VLDB Endow. 9.5 (2016), 384–395. url:
https://doi.org/10.14778/2876473.2876474.

[49] Y. Freund et al. “Selective Sampling Using the Query by Committee Algorithm”.
In: Machine Learning 28.2-3 (1997), pp. 133–168.

226

https://doi.org/10.14778/2824032.2824057
http://spatialhadoop.cs.umn.edu/datasets.html
http://spatialhadoop.cs.umn.edu/datasets.html
http://dx.doi.org/10.1109/ICDE.2015.7113382
https://doi.org/10.14778/2876473.2876474

[50] Avigdor Gal, Haggai Roitman, and Tomer Sagi. “From Diversity-based Pre-
diction to Better Ontology & Schema Matching”. In: Proceedings of the 25th
International Conference on World Wide Web, WWW 2016, Montreal, Canada,
April 11 - 15, 2016. Ed. by Jacqueline Bourdeau et al. ACM, 2016, pp. 1145–
1155. url: https://doi.org/10.1145/2872427.2882999.

[51] Sainyam Galhotra et al. “Robust Entity Resolution Using Random Graphs”.
In: Proceedings of the 2018 International Conference on Management of Data.
SIGMOD ’18. Houston, TX, USA: Association for Computing Machinery, 2018,
3–18. url: https://doi.org/10.1145/3183713.3183755.

[52] Antonio Giuzio et al. INDIANA the Database Explorer. Tech. rep. Università
della Basilicata, Politecnico di Milano, 2017. url: http://www.db.unibas.it/
projects/indiana/articles/DatabaseExploration-TR2017.pdf.

[53] Chaitanya Gokhale et al. “Corleone: Hands-off Crowdsourcing for Entity Match-
ing”. In: SIGMOD. 2014, pp. 601–612.

[54] Alon Gonen, Sivan Sabato, and Shai Shalev-Shwartz. “Efficient Active Learning
of Halfspaces: An Aggressive Approach”. In: JMLR 14.1 (2013), pp. 2583–2615.

[55] Yuhong Guo and Russell Greiner. “Optimistic Active-Learning Using Mutual
Information”. In: IJCAI 2007, Proceedings of the 20th International Joint
Conference on Artificial Intelligence, Hyderabad, India, January 6-12, 2007. Ed.
by Manuela M. Veloso. 2007, pp. 823–829. url: http://ijcai.org/Proceedings/
07/Papers/132.pdf.

[56] Peter J. Haas et al. “Selectivity and Cost Estimation for Joins Based on
Random Sampling”. In: J. Comput. Syst. Sci. 52.3 (1996), pp. 550–569. url:
https://doi.org/10.1006/jcss.1996.0041.

[57] Will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive Representation
Learning on Large Graphs”. In: Advances in Neural Information Processing
Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc., 2017, pp. 1024–
1034. url: https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6
fb5ba83c7a7ebea9-Paper.pdf.

[58] William L. Hamilton, Rex Ying, and Jure Leskovec. Representation Learning on
Graphs: Methods and Applications. cite arxiv:1709.05584Comment: Published
in the IEEE Data Engineering Bulletin, September 2017; version with minor
corrections. 2017. url: http://arxiv.org/abs/1709.05584.

227

https://doi.org/10.1145/2872427.2882999
https://doi.org/10.1145/3183713.3183755
http://www.db.unibas.it/projects/indiana/articles/DatabaseExploration-TR2017.pdf
http://www.db.unibas.it/projects/indiana/articles/DatabaseExploration-TR2017.pdf
http://ijcai.org/Proceedings/07/Papers/132.pdf
http://ijcai.org/Proceedings/07/Papers/132.pdf
https://doi.org/10.1006/jcss.1996.0041
https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
http://arxiv.org/abs/1709.05584

[59] Yuxing Han et al. “Cardinality Estimation in DBMS: A Comprehensive Bench-
mark Evaluation”. In: CoRR abs/2109.05877 (2021). arXiv: 2109.05877. url:
https://arxiv.org/abs/2109.05877.

[60] Junheng Hao et al. “MEDTO: Medical Data to Ontology Matching Using Hybrid
Graph Neural Networks”. In: KDD ’21: The 27th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, Virtual Event, Singapore, August
14-18, 2021. Ed. by Feida Zhu, Beng Chin Ooi, and Chunyan Miao. ACM,
2021, pp. 2946–2954. url: https://doi.org/10.1145/3447548.3467138.

[61] Hazar Harmouch and Felix Naumann. “Cardinality Estimation: An Exper-
imental Survey”. In: Proc. VLDB Endow. 11.4 (2017), pp. 499–512. url:
http://www.vldb.org/pvldb/vol11/p499-harmouch.pdf.

[62] Hado van Hasselt, Arthur Guez, and David Silver. “Deep Reinforcement Learn-
ing with Double Q-Learning”. In: Proceedings of the Thirtieth AAAI Confer-
ence on Artificial Intelligence. AAAI’16. Phoenix, Arizona: AAAI Press, 2016,
2094–2100.

[63] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift”. In: ICML. 2015,
pp. 448–456.

[64] Prasanth Jayachandran et al. “Combining User Interaction, Speculative Query
Execution and Sampling in the DICE System”. In: PVLDB 7.13 (2014),
pp. 1697–1700.

[65] Manas Joglekar, Hector Garcia-Molina, and Aditya G. Parameswaran. “Inter-
active data exploration with smart drill-down”. In: 32nd IEEE International
Conference on Data Engineering, ICDE 2016, Helsinki, Finland, May 16-20,
2016. 2016, pp. 906–917.

[66] JSQLParser. 2011. url: https://github.com/JSQLParser/JSqlParser.

[67] Niranjan Kamat et al. “Distributed and interactive cube exploration”. In: IEEE
30th International Conference on Data Engineering, Chicago, ICDE 2014, IL,
USA, March 31 - April 4, 2014. 2014, pp. 472–483.

[68] Marius Kaminskas and Derek Bridge. “Diversity, Serendipity, Novelty, and
Coverage: A Survey and Empirical Analysis of Beyond-Accuracy Objectives
in Recommender Systems”. In: ACM Trans. Interact. Intell. Syst. 7.1 (2017),
2:1–2:42. url: https://doi.org/10.1145/2926720.

228

https://arxiv.org/abs/2109.05877
https://arxiv.org/abs/2109.05877
https://doi.org/10.1145/3447548.3467138
http://www.vldb.org/pvldb/vol11/p499-harmouch.pdf
https://github.com/JSQLParser/JSqlParser
https://doi.org/10.1145/2926720

[69] Andrej Karpathy. The Unreasonable Effectiveness of Recurrent Neural networks.
2015. url: http://karpathy.github.io/2015/05/21/rnn-effectiveness/.

[70] Jungo Kasai et al. “Low-resource Deep Entity Resolution with Transfer and
Active Learning”. In: ACL. 2019.

[71] Raghav Kaushik and Dan Suciu. “Consistent Histograms In The Presence of
Distinct Value Counts”. In: Proc. VLDB Endow. 2.1 (2009), pp. 850–861. url:
http://www.vldb.org/pvldb/vol2/vldb09-561.pdf.

[72] Asif R. Khan and H. Garcia-Molina. “Attribute-based Crowd Entity Resolution”.
In: CIKM. 2016.

[73] Nodira Khoussainova et al. “SnipSuggest: Context-Aware Autocompletion for
SQL”. In: Proc. VLDB Endow. 4.1 (2010), pp. 22–33. url: http://www.vldb.
org/pvldb/vol4/p22-khoussainova.pdf.

[74] Andreas Kipf et al. “Estimating Cardinalities with Deep Sketches”. In: Proceed-
ings of the 2019 International Conference on Management of Data, SIGMOD
Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019. 2019,
pp. 1937–1940. url: https://doi.org/10.1145/3299869.3320218.

[75] Andreas Kipf et al. “Learned Cardinalities: Estimating Correlated Joins with
Deep Learning”. In: 9th Biennial Conference on Innovative Data Systems
Research, CIDR 2019, Asilomar, CA, USA, January 13-16, 2019, Online
Proceedings. 2019. url: http : / / cidrdb . org / cidr2019/papers /p101 - kipf -
cidr19.pdf.

[76] Pradap Konda et al. “Magellan: Toward Building Entity Matching Management
Systems”. In: PVLDB 9.12 (2016), pp. 1197–1208. url: http://www.vldb.org/
pvldb/vol9/p1197-pkonda.pdf.

[77] Hanna Köpcke, Andreas Thor, and Erhard Rahm. “Evaluation of Entity Res-
olution Approaches on Real-world Match Problems”. In: PVLDB 3.1 (2010),
pp. 484–493.

[78] Daniel D Lee and H Sebastian Seung. “Learning the parts of objects by non-
negative matrix factorization”. In: Nature. 401.6755 (1999), pp. 788–791.

[79] Jeff LeFevre et al. “Opportunistic Physical Design for Big Data Analytics”. In:
Proceedings of the 2014 ACM SIGMOD International Conference on Manage-
ment of Data. SIGMOD ’14. Snowbird, Utah, USA, 2014, pp. 851–862.

229

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://www.vldb.org/pvldb/vol2/vldb09-561.pdf
http://www.vldb.org/pvldb/vol4/p22-khoussainova.pdf
http://www.vldb.org/pvldb/vol4/p22-khoussainova.pdf
https://doi.org/10.1145/3299869.3320218
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf
http://www.vldb.org/pvldb/vol9/p1197-pkonda.pdf
http://www.vldb.org/pvldb/vol9/p1197-pkonda.pdf

[80] Wenqiang Lei et al. “Estimation-Action-Reflection: Towards Deep Interaction
Between Conversational and Recommender Systems”. In: Proceedings of the
13th International Conference on Web Search and Data Mining. WSDM ’20.
Houston, TX, USA: Association for Computing Machinery, 2020, 304–312. url:
https://doi.org/10.1145/3336191.3371769.

[81] Raymond Li et al. “Towards Deep Conversational Recommendations”. In:
Advances in Neural Information Processing Systems. Ed. by S. Bengio et al.
Vol. 31. Curran Associates, Inc., 2018. url: https://proceedings.neurips.cc/
paper/2018/file/800de15c79c8d840f4e78d3af937d4d4-Paper.pdf.

[82] Xi Liang, Aaron J. Elmore, and Sanjay Krishnan. “Opportunistic View Ma-
terialization with Deep Reinforcement Learning”. In: CoRR abs/1903.01363
(2019). arXiv: 1903.01363.

[83] Jie Liu et al. “Fauce: Fast and Accurate Deep Ensembles with Uncertainty for
Cardinality Estimation”. In: Proc. VLDB Endow. 14.11 (2021), pp. 1950–1963.
url: http://www.vldb.org/pvldb/vol14/p1950-liu.pdf.

[84] Ziang Liu and Dongrui Wu. “Integrating Informativeness, Representativeness
and Diversity in Pool-Based Sequential Active Learning for Regression”. In: 2020
International Joint Conference on Neural Networks, IJCNN 2020, Glasgow,
United Kingdom, July 19-24, 2020. IEEE, 2020, pp. 1–7. url: https://doi.org/
10.1109/IJCNN48605.2020.9206845.

[85] Lin Ma et al. “Query-based Workload Forecasting for Self-Driving Database
Management Systems”. In: Proceedings of the 2018 International Conference
on Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June
10-15, 2018. 2018, pp. 631–645.

[86] Tariq Mahmood and Francesco Ricci. “Improving Recommender Systems with
Adaptive Conversational Strategies”. In: Proceedings of the 20th ACM Confer-
ence on Hypertext and Hypermedia. HT ’09. Torino, Italy: Association for Com-
puting Machinery, 2009, 73–82. url: https://doi.org/10.1145/1557914.1557930.

[87] Tanu Malik, Randal C. Burns, and Nitesh V. Chawla. “A Black-Box Approach
to Query Cardinality Estimation”. In: Third Biennial Conference on Innovative
Data Systems Research, CIDR 2007, Asilomar, CA, USA, January 7-10, 2007,
Online Proceedings. 2007, pp. 56–67. url: http://cidrdb.org/cidr2007/papers/
cidr07p06.pdf.

[88] Nikos Mamoulis and Dimitris Papadias. “Selectivity Estimation of Complex
Spatial Queries”. In: Advances in Spatial and Temporal Databases, 7th Interna-

230

https://doi.org/10.1145/3336191.3371769
https://proceedings.neurips.cc/paper/2018/file/800de15c79c8d840f4e78d3af937d4d4-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/800de15c79c8d840f4e78d3af937d4d4-Paper.pdf
https://arxiv.org/abs/1903.01363
http://www.vldb.org/pvldb/vol14/p1950-liu.pdf
https://doi.org/10.1109/IJCNN48605.2020.9206845
https://doi.org/10.1109/IJCNN48605.2020.9206845
https://doi.org/10.1145/1557914.1557930
http://cidrdb.org/cidr2007/papers/cidr07p06.pdf
http://cidrdb.org/cidr2007/papers/cidr07p06.pdf

tional Symposium, SSTD 2001, Redondo Beach, CA, USA, July 12-15, 2001,
Proceedings. 2001, pp. 155–174. url: https://doi.org/10.1007/3-540-47724-
1_9.

[89] Neil G. Marchant and Benjamin I. P. Rubinstein. “In Search of an Entity
Resolution OASIS: Optimal Asymptotic Sequential Importance Sampling”. In:
Proc. VLDB Endow. 10.11 (2017), pp. 1322–1333. url: http://www.vldb.org/
pvldb/vol10/p1322-rubinstein.pdf.

[90] Ben McCamish, Arash Termehchy, and Behrouz Touri. “A Game-theoretic
Approach to Data Interaction: A Progress Report”. In: HILDA@SIGMOD.
2017.

[91] Ben McCamish et al. “A Signaling Game Approach to Databases Querying”.
In: Proceedings of the 10th Alberto Mendelzon International Workshop on
Foundations of Data Management, Panama City, Panama, May 8-10, 2016.
2016.

[92] Ben McCamish et al. “A Signaling Game Approach to Databases Querying
and Interaction”. In: CoRR abs/1603.04068 (2016). arXiv: 1603.04068. url:
http://arxiv.org/abs/1603.04068.

[93] Ben McCamish et al. “The Data Interaction Game”. In: Proceedings of the 2018
International Conference on Management of Data. SIGMOD ’18. Houston, TX,
USA, 2018, pp. 83–98.

[94] Venkata Vamsikrishna Meduri, Kanchan Chowdhury, and Mohamed Sarwat.
“Evaluation of Machine Learning Algorithms in Predicting the Next SQL Query
from the Future”. In: ACM Trans. Database Syst. 46.1 (2021), 4:1–4:46. url:
https://doi.org/10.1145/3442338.

[95] Venkata Vamsikrishna Meduri, Kanchan Chowdhury, and Mohamed Sarwat.
“Recurrent Neural Networks for Dynamic User Intent Prediction in Human-
Database Interaction”. In: Advances in Database Technology - 22nd Interna-
tional Conference on Extending Database Technology, EDBT 2019, Lisbon,
Portugal, March 26-29, 2019. 2019, pp. 654–657. url: https://doi.org/10.5441/
002/edbt.2019.79.

[96] Venkata Vamsikrishna Meduri et al. “A Comprehensive Benchmark Framework
for Active Learning Methods in Entity Matching”. In: Proceedings of the 2020
International Conference on Management of Data, SIGMOD Conference 2020,
online conference [Portland, OR, USA], June 14-19, 2020. 2020, pp. 1133–1147.
url: https://doi.org/10.1145/3318464.3380597.

231

https://doi.org/10.1007/3-540-47724-1_9
https://doi.org/10.1007/3-540-47724-1_9
http://www.vldb.org/pvldb/vol10/p1322-rubinstein.pdf
http://www.vldb.org/pvldb/vol10/p1322-rubinstein.pdf
https://arxiv.org/abs/1603.04068
http://arxiv.org/abs/1603.04068
https://doi.org/10.1145/3442338
https://doi.org/10.5441/002/edbt.2019.79
https://doi.org/10.5441/002/edbt.2019.79
https://doi.org/10.1145/3318464.3380597

[97] Tova Milo and Amit Somech. “Next-Step Suggestions for Modern Interactive
Data Analysis Platforms”. In: Proceedings of the 24th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, KDD 2018, London,
UK, August 19-23, 2018. 2018, pp. 576–585.

[98] Volodymyr Mnih et al. “Human-level control through deep reinforcement
learning”. In: Nat. 518.7540 (2015), pp. 529–533.

[99] Barzan Mozafari et al. “Scaling Up Crowd-sourcing to Very Large Datasets: A
Case for Active Learning”. In: PVLDB 8.2 (2014), pp. 125–136.

[100] Sidharth Mudgal et al. “Deep Learning for Entity Matching: A Design Space
Exploration”. In: Proceedings of the 2018 International Conference on Manage-
ment of Data. SIGMOD ’18. Houston, TX, USA: ACM, 2018, pp. 19–34. url:
http://doi.acm.org/10.1145/3183713.3196926.

[101] Parimarjan Negi et al. “Cost-Guided Cardinality Estimation: Focus Where
it Matters”. In: 36th IEEE International Conference on Data Engineering
Workshops, ICDE Workshops 2020, Dallas, TX, USA, April 20-24, 2020. 2020,
pp. 154–157. url: https://doi.org/10.1109/ICDEW49219.2020.00034.

[102] Parimarjan Negi et al. “Flow-Loss: Learning Cardinality Estimates That Mat-
ter”. In: Proc. VLDB Endow. 14.11 (2021), pp. 2019–2032. url: http://www.
vldb.org/pvldb/vol14/p2019-negi.pdf.

[103] Tan T. Nguyen and Scott Sanner. “Algorithms for Direct 0-1 Loss Optimization
in Binary Classification”. In: Proceedings of the 30th International Conference
on International Conference on Machine Learning - Volume 28. ICML’13.
Atlanta, GA, USA: JMLR.org, 2013, pp. III–1085–III–1093. url: http://dl.
acm.org/citation.cfm?id=3042817.3043058.

[104] OAEI Conference Dataset. http://oaei.ontologymatching.org/2021/conference
/. 2021.

[105] OAEI Human-Mouse Anatomy Dataset. http://oaei.ontologymatching.org/
2021/anatomy/. 2021.

[106] Christopher Olah. Understanding LSTM-based RNNs. 2015. url: http://colah.
github.io/posts/2015-08-Understanding-LSTMs/.

[107] Ontology Alignment Evaluation Initiative. http://oaei.ontologymatching.org.

232

http://doi.acm.org/10.1145/3183713.3196926
https://doi.org/10.1109/ICDEW49219.2020.00034
http://www.vldb.org/pvldb/vol14/p2019-negi.pdf
http://www.vldb.org/pvldb/vol14/p2019-negi.pdf
http://dl.acm.org/citation.cfm?id=3042817.3043058
http://dl.acm.org/citation.cfm?id=3042817.3043058
http://oaei.ontologymatching.org/2021/conference/
http://oaei.ontologymatching.org/2021/conference/
http://oaei.ontologymatching.org/2021/anatomy/
http://oaei.ontologymatching.org/2021/anatomy/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://oaei.ontologymatching.org

[108] Jennifer Ortiz et al. “An Empirical Analysis of Deep Learning for Cardinality
Estimation”. In: CoRR abs/1905.06425 (2019). arXiv: 1905.06425. url: http:
//arxiv.org/abs/1905.06425.

[109] Natalia Ostapuk, Jie Yang, and Philippe Cudré-Mauroux. “ActiveLink: Deep
Active Learning for Link Prediction in Knowledge Graphs”. In: The World
Wide Web Conference, WWW 2019, San Francisco, CA, USA, May 13-17,
2019. Ed. by Ling Liu et al. ACM, 2019, pp. 1398–1408. url: https://doi.org/
10.1145/3308558.3313620.

[110] Olga Papaemmanouil et al. “Interactive Data Exploration via Machine Learning
Models”. In: IEEE Data Eng. Bull. 39.4 (2016), pp. 38–49. url: http://sites.
computer.org/debull/A16dec/p38.pdf.

[111] Yongjoo Park et al. “Database Learning: Toward a Database That Becomes
Smarter Every Time”. In: Proceedings of the 2017 ACM International Con-
ference on Management of Data. SIGMOD ’17. Chicago, Illinois, USA, 2017,
pp. 587–602.

[112] Liping Peng et al. “Uncertainty Sampling and Optimization for Interactive
Database Exploration”. In: UMass Technical Report (2017).

[113] Viswanath Poosala and Yannis E. Ioannidis. “Selectivity Estimation Without
the Attribute Value Independence Assumption”. In: VLDB’97, Proceedings of
23rd International Conference on Very Large Data Bases, August 25-29, 1997,
Athens, Greece. 1997, pp. 486–495. url: http://www.vldb.org/conf/1997/
P486.PDF.

[114] Kun Qian, Lucian Popa, and Prithviraj Sen. “Active Learning for Large-Scale
Entity Resolution”. In: CIKM. 2017, pp. 1379–1388.

[115] Xiao Qin et al. “Relation-aware Graph Attention Model with Adaptive Self-
adversarial Training”. In: Thirty-Fifth AAAI Conference on Artificial Intel-
ligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of
Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational
Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9,
2021. AAAI Press, 2021, pp. 9368–9376. url: https://ojs.aaai.org/index.php/
AAAI/article/view/17129.

[116] Abdul Quamar et al. “Conversational BI: An Ontology-Driven Conversation-
System for Business Intelligence Applications”. In: Proc. VLDB Endow. 13.12
(2020), pp. 3369–3381. url: http ://www.vldb .org/pvldb/vol13/p3369-
quamar.pdf.

233

https://arxiv.org/abs/1905.06425
http://arxiv.org/abs/1905.06425
http://arxiv.org/abs/1905.06425
https://doi.org/10.1145/3308558.3313620
https://doi.org/10.1145/3308558.3313620
http://sites.computer.org/debull/A16dec/p38.pdf
http://sites.computer.org/debull/A16dec/p38.pdf
http://www.vldb.org/conf/1997/P486.PDF
http://www.vldb.org/conf/1997/P486.PDF
https://ojs.aaai.org/index.php/AAAI/article/view/17129
https://ojs.aaai.org/index.php/AAAI/article/view/17129
http://www.vldb.org/pvldb/vol13/p3369-quamar.pdf
http://www.vldb.org/pvldb/vol13/p3369-quamar.pdf

[117] Erhard Rahm and Philip A. Bernstein. “A survey of approaches to automatic
schema matching”. In: VLDB J. 10.4 (2001), pp. 334–350. url: https://doi.
org/10.1007/s007780100057.

[118] Random Forests in the Scikit-learn Library. 2007. url: https://scikit-learn.org/
stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html.

[119] Tirthankar RayChaudhuri and Leonard GC Hamey. “Minimisation of data col-
lection by active learning”. In: Proceedings of ICNN’95-International Conference
on Neural Networks. Vol. 3. IEEE. 1995, pp. 1338–1341.

[120] Christopher Ré and Dan Suciu. “Understanding cardinality estimation using
entropy maximization”. In: ACM Trans. Database Syst. 37.1 (2012), 6:1–6:31.
url: https://doi.org/10.1145/2109196.2109202.

[121] Peter Rousseeuw. “Silhouettes: A Graphical Aid to the Interpretation and
Validation of Cluster Analysis”. In: Journal of Computational and Applied
Mathematics 20.1 (1987), pp. 53–65.

[122] Nicholas Roy and Andrew McCallum. “Toward Optimal Active Learning
through Sampling Estimation of Error Reduction”. In: Proceedings of the Eigh-
teenth International Conference on Machine Learning (ICML 2001), Williams
College, Williamstown, MA, USA, June 28 - July 1, 2001. Ed. by Carla E.
Brodley and Andrea Pohoreckyj Danyluk. Morgan Kaufmann, 2001, pp. 441–
448.

[123] Senjuti Basu Roy et al. “DynaCet: Building Dynamic Faceted Search Systems
over Databases”. In: Proceedings of the 25th International Conference on Data
Engineering, ICDE 2009, March 29 2009 - April 2 2009, Shanghai, China.
Ed. by Yannis E. Ioannidis, Dik Lun Lee, and Raymond T. Ng. IEEE Computer
Society, 2009, pp. 1463–1466.

[124] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
2nd ed. Pearson Education, 2003.

[125] Tanvi Sahay, Ankita Mehta, and Shruti Jadon. “Schema Matching using
Machine Learning”. In: CoRR abs/1911.11543 (2019). arXiv: 1911.11543. url:
http://arxiv.org/abs/1911.11543.

[126] Sunita Sarawagi and Anuradha Bhamidipaty. “Interactive Deduplication Using
Active Learning”. In: KDD. 2002, pp. 269–278.

234

https://doi.org/10.1007/s007780100057
https://doi.org/10.1007/s007780100057
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://doi.org/10.1145/2109196.2109202
https://arxiv.org/abs/1911.11543
http://arxiv.org/abs/1911.11543

[127] Ville Satopaa et al. “Finding a "Kneedle" in a Haystack: Detecting Knee Points
in System Behavior”. In: ICDCS Workshops. 2011, pp. 166–171.

[128] Tom Schaul et al. “Prioritized Experience Replay”. In: 4th International Con-
ference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings. 2016.

[129] Sequence Models and Long-Short Term Memory Networks in PyTorch. 2017.
url: https://pytorch.org/tutorials/beginner/nlp/sequence_models_tutorial.
html.

[130] Burr Settles. Active Learning Literature Survey. Tech. rep. University of
Wisconsin-Madison, 2009.

[131] H. Seung, M. Opper, and H. Sompolinsky. “Query by committee”. In: Workshop
on COLT. 1992, pp. 287–294.

[132] Roee Shraga, Avigdor Gal, and Haggai Roitman. “ADnEV: Cross-Domain
Schema Matching using Deep Similarity Matrix Adjustment and Evaluation”.
In: Proc. VLDB Endow. 13.9 (2020), pp. 1401–1415. url: http://www.vldb.
org/pvldb/vol13/p1401-shraga.pdf.

[133] Simmetrics Java Library. https://github.com/mpkorstanje/simmetrics.git.

[134] Rohit Singh et al. “Synthesizing Entity Matching Rules by Examples”. In:
PVLDB 11.2 (2017), pp. 189–202. url: http://www.vldb.org/pvldb/vol11/
p189-singh.pdf.

[135] Vik Singh et al. “SkyServer Traffic Report - The First Five Years”. In: CoRR
abs/cs/0701173 (2007). arXiv: cs/0701173.

[136] Ted Snyder. The Benefits of Machine Learning for Large Scale Schema Mapping.
https://www.tamr.com/blog/benefits-of-machine-learning-for-large-scale-
schema-mapping/. 2019.

[137] Amit Somech, Tova Milo, and Chai Ozeri. “Predicting What is Interesting
by Mining Interactive-Data-Analysis Session Logs”. In: Advances in Database
Technology - 22nd International Conference on Extending Database Technology,
EDBT 2019, Lisbon, Portugal, March 26-29, 2019. 2019, pp. 456–467.

[138] Utkarsh Srivastava et al. “ISOMER: Consistent Histogram Construction Using
Query Feedback”. In: Proceedings of the 22nd International Conference on Data

235

https://pytorch.org/tutorials/beginner/nlp/sequence_models_tutorial.html
https://pytorch.org/tutorials/beginner/nlp/sequence_models_tutorial.html
http://www.vldb.org/pvldb/vol13/p1401-shraga.pdf
http://www.vldb.org/pvldb/vol13/p1401-shraga.pdf
https://github.com/mpkorstanje/simmetrics.git
http://www.vldb.org/pvldb/vol11/p189-singh.pdf
http://www.vldb.org/pvldb/vol11/p189-singh.pdf
https://arxiv.org/abs/cs/0701173
https://www.tamr.com/blog/benefits-of-machine-learning-for-large-scale-schema-mapping/
https://www.tamr.com/blog/benefits-of-machine-learning-for-large-scale-schema-mapping/

Engineering, ICDE 2006, 3-8 April 2006, Atlanta, GA, USA. 2006, p. 39. url:
https://doi.org/10.1109/ICDE.2006.84.

[139] Michael Stillger et al. “LEO - DB2’s LEarning Optimizer”. In: VLDB 2001, Pro-
ceedings of 27th International Conference on Very Large Data Bases, September
11-14, 2001, Roma, Italy. 2001, pp. 19–28. url: http://www.vldb.org/conf/
2001/P019.pdf.

[140] Chengyu Sun, Divyakant Agrawal, and Amr El Abbadi. “Selectivity Estima-
tion for Spatial Joins with Geometric Selections”. In: Advances in Database
Technology - EDBT 2002, 8th International Conference on Extending Database
Technology, Prague, Czech Republic, March 25-27, Proceedings. 2002, pp. 609–
626. url: https://doi.org/10.1007/3-540-45876-X_38.

[141] Ji Sun, Guoliang Li, and Nan Tang. “Learned Cardinality Estimation for
Similarity Queries”. In: SIGMOD ’21: International Conference on Management
of Data, Virtual Event, China, June 20-25, 2021. Ed. by Guoliang Li et al.
ACM, 2021, pp. 1745–1757. url: https://doi.org/10.1145/3448016.3452790.

[142] SystemML. https://systemml.apache.org/.

[143] Yufei Tao, Christos Faloutsos, and Dimitris Papadias. “Spatial Query Esti-
mation without the Local Uniformity Assumption”. In: GeoInformatica 10.3
(2006), pp. 261–293. url: https://doi.org/10.1007/s10707-006-9828-7.

[144] Taxi and Limousine Commission. TLC Trip Record Data for the New York
City. https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page. 2009.

[145] S. Tejada, C. Knoblock, and S. Minton. “Learning Object Identification Rules
for Information Integration”. In: Inf. Syst. 26.8 (2001), pp. 607–633.

[146] Simon Tong and Daphne Koller. “Support Vector Machine Active Learning
with Applications to Text Classification”. In: JMLR 2 (2001), pp. 45–66.

[147] Trifacta. https://www.trifacta.com.

[148] Manasi Vartak et al. “SEEDB: Efficient Data-Driven Visualization Recom-
mendations to Support Visual Analytics”. In: PVLDB 8.13 (2015), pp. 2182–
2193.

[149] V. Verroios, H. Garcia-Molina, and Y. Papakonstantinou. “Waldo: An adaptive
human interface for crowd entity resolution”. In: SIGMOD. 2017.

236

https://doi.org/10.1109/ICDE.2006.84
http://www.vldb.org/conf/2001/P019.pdf
http://www.vldb.org/conf/2001/P019.pdf
https://doi.org/10.1007/3-540-45876-X_38
https://doi.org/10.1145/3448016.3452790
https://systemml.apache.org/
https://doi.org/10.1007/s10707-006-9828-7
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.trifacta.com

[150] N. Vesdapunt, K. Bellare, and N. Dalvi. “Crowdsourcing algorithms for entity
resolution”. In: PVLDB. 2014.

[151] Dimitri Vorona et al. “DeepSPACE: Approximate Geospatial Query Process-
ing with Deep Learning”. In: Proceedings of the 27th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems.
SIGSPATIAL ’19. Chicago, IL, USA: Association for Computing Machinery,
2019, 500–503. url: https://doi.org/10.1145/3347146.3359112.

[152] Tin Vu et al. “A Learned Query Optimizer for Spatial Join”. In: Proceedings of
the 29th International Conference on Advances in Geographic Information Sys-
tems. SIGSPATIAL ’21. Beijing, China: Association for Computing Machinery,
2021, 458–467. url: https://doi.org/10.1145/3474717.3484217.

[153] J. Wang et al. “Leveraging transitive relations for crowdsourced joins”. In:
SIGMOD. 2013.

[154] Jiannan Wang et al. “CrowdER: Crowdsourcing Entity Resolution”. In: PVLDB
5.11 (2012), pp. 1483–1494.

[155] Jiannan Wang et al. “Entity Matching: How Similar Is Similar”. In: Proc. VLDB
Endow. 4.10 (2011), pp. 622–633. url: http://www.vldb.org/pvldb/vol4/p622-
wang.pdf.

[156] S. Wang, X. Xiao, and C. Lee. “Crowd-Based Deduplication: An Adaptive
Approach”. In: SIGMOD. 2015.

[157] Xiaoyang Wang et al. “Selectivity Estimation on Streaming Spatio-Textual
Data Using Local Correlations”. In: Proc. VLDB Endow. 8.2 (2014), 101–112.
url: https://doi.org/10.14778/2735471.2735472.

[158] Yining Wang et al. “A Theoretical Analysis of NDCG Type Ranking Measures”.
In: COLT 2013 - The 26th Annual Conference on Learning Theory, June 12-14,
2013, Princeton University, NJ, USA. Ed. by Shai Shalev-Shwartz and Ingo
Steinwart. Vol. 30. JMLR Workshop and Conference Proceedings. JMLR.org,
2013, pp. 25–54. url: http://proceedings.mlr.press/v30/Wang13.html.

[159] Abdul Wasay et al. “Data Canopy: Accelerating Exploratory Statistical Analy-
sis”. In: Proceedings of the 2017 ACM International Conference on Management
of Data. SIGMOD ’17. Chicago, Illinois, USA, 2017, pp. 557–572.

[160] Christopher J. C. H. Watkins and Peter Dayan. “Q-learning”. In: Machine
Learning. 1992, pp. 279–292.

237

https://doi.org/10.1145/3347146.3359112
https://doi.org/10.1145/3474717.3484217
http://www.vldb.org/pvldb/vol4/p622-wang.pdf
http://www.vldb.org/pvldb/vol4/p622-wang.pdf
https://doi.org/10.14778/2735471.2735472
http://proceedings.mlr.press/v30/Wang13.html

[161] Weka. https://cs.waikato.ac.nz/ml/weka/.

[162] S. Whang, P. Lofgren, and H. Garcia-Molina. “Question selection for crowd
entity resolution”. In: VLDB. 2013.

[163] Wikipedia. Mean Squared Error. https ://en .wikipedia .org/wiki/Mean_
squared_error. last updated: 28th March 2022, at 19:12 (UTC). 2022.

[164] Dongrui Wu. “Pool-Based Sequential Active Learning for Regression”. In: IEEE
Trans. Neural Networks Learn. Syst. 30.5 (2019), pp. 1348–1359. url: https:
//doi.org/10.1109/TNNLS.2018.2868649.

[165] Dongrui Wu, Chin-Teng Lin, and Jian Huang. “Active learning for regression
using greedy sampling”. In: Inf. Sci. 474 (2019), pp. 90–105. url: https :
//doi.org/10.1016/j.ins.2018.09.060.

[166] Renzhi Wu et al. “ZeroER: Entity Resolution using Zero Labeled Examples”.
In: Proceedings of the 2020 International Conference on Management of Data,
SIGMOD Conference 2020, online conference [Portland, OR, USA], June 14-19,
2020. 2020, pp. 1149–1164. url: https://doi.org/10.1145/3318464.3389743.

[167] Michael Wunder, Michael L. Littman, and Monica Babes. “Classes of Multiagent
Q-learning Dynamics with epsilon-greedy Exploration.” In: ICML. Ed. by
Johannes Fürnkranz and Thorsten Joachims. Omnipress, 2010, pp. 1167–1174.

[168] Cong Yan and Yeye He. “Auto-Suggest: Learning-to-Recommend Data Prepa-
ration Steps Using Data Science Notebooks”. In: Proceedings of the 2020
International Conference on Management of Data, SIGMOD Conference 2020,
online conference [Portland, OR, USA], June 14-19, 2020. 2020, pp. 1539–1554.

[169] Xun Yan et al. “Spatial query processing engine in spatially enabled database”.
In: The 18th International Conference on Geoinformatics: GIScience in Change,
Geoinformatics 2010, Peking University, Beijing, China, June, 18-20, 2010.
2010, pp. 1–6. url: https://doi.org/10.1109/GEOINFORMATICS.2010.
5567750.

[170] Zongheng Yang et al. “Deep Unsupervised Cardinality Estimation”. In: Proc.
VLDB Endow. 13.3 (2019), pp. 279–292. url: http://www.vldb.org/pvldb/
vol13/p279-yang.pdf.

[171] Zongheng Yang et al. “NeuroCard: One Cardinality Estimator for All Tables”.
In: Proc. VLDB Endow. 14.1 (2020), pp. 61–73. url: http://www.vldb.org/
pvldb/vol14/p61-yang.pdf.

238

https://cs.waikato.ac.nz/ml/weka/
https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Mean_squared_error
https://doi.org/10.1109/TNNLS.2018.2868649
https://doi.org/10.1109/TNNLS.2018.2868649
https://doi.org/10.1016/j.ins.2018.09.060
https://doi.org/10.1016/j.ins.2018.09.060
https://doi.org/10.1145/3318464.3389743
https://doi.org/10.1109/GEOINFORMATICS.2010.5567750
https://doi.org/10.1109/GEOINFORMATICS.2010.5567750
http://www.vldb.org/pvldb/vol13/p279-yang.pdf
http://www.vldb.org/pvldb/vol13/p279-yang.pdf
http://www.vldb.org/pvldb/vol14/p61-yang.pdf
http://www.vldb.org/pvldb/vol14/p61-yang.pdf

[172] Hwanjo Yu and Sungchul Kim. “Passive Sampling for Regression”. In: 2010
IEEE International Conference on Data Mining. 2010, pp. 1151–1156.

[173] Jia Yu, Zongsi Zhang, and Mohamed Sarwat. “Spatial Data Management in
Apache Spark: The GeoSpark Perspective and Beyond”. In: Geoinformatica
23.1 (Jan. 2019), 37–78. url: https://doi.org/10.1007/s10707-018-0330-9.

[174] Jia Yu, Zongsi Zhang, and Mohamed Sarwat. The Apache Sedona Spatial
Database Engine. https://sedona.apache.org/. 2019.

[175] Huaxin Zhang, Ihab F. Ilyas, and Kenneth Salem. “PSALM: Cardinality
Estimation inthe Presence of Fine-Grained Access Controls”. In: Proceedings
of the 25th International Conference on Data Engineering, ICDE 2009, March
29 2009 - April 2 2009, Shanghai, China. 2009, pp. 505–516. url: https :
//doi.org/10.1109/ICDE.2009.39.

239

https://doi.org/10.1007/s10707-018-0330-9
https://sedona.apache.org/
https://doi.org/10.1109/ICDE.2009.39
https://doi.org/10.1109/ICDE.2009.39

ProQuest Number:

INFORMATION TO ALL USERS
The quality and completeness of this reproduction is dependent on the quality

and completeness of the copy made available to ProQuest.

Distributed by ProQuest LLC ().
Copyright of the Dissertation is held by the Author unless otherwise noted.

This work may be used in accordance with the terms of the Creative Commons license
or other rights statement, as indicated in the copyright statement or in the metadata

associated with this work. Unless otherwise specified in the copyright statement
or the metadata, all rights are reserved by the copyright holder.

This work is protected against unauthorized copying under Title 17,
United States Code and other applicable copyright laws.

Microform Edition where available © ProQuest LLC. No reproduction or digitization
of the Microform Edition is authorized without permission of ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346 USA

29212685

2022

	Table of Contents
	Chapter
	1 Introduction
	2 Background and Related Work
	2.1 Overview of the Dissertation
	2.1.1 Problem Statement
	2.1.1.1 Motivation to the Proposed Solutions

	2.2 Related Work
	2.2.1 Human-in-the-Loop Entity Matching
	2.2.1.1 Limitations of Supervised Learning
	2.2.1.2 Need for a Comprehensive EM Evaluation Framework
	2.2.1.3 Evaluation of Imperfect Oracles
	2.2.1.4 Advanced Representation Architectures

	2.2.2 Human-in-the-Loop Ontology Matching
	2.2.2.1 Need for Ontology Matching
	2.2.2.2 Limitations of Heuristic-based Approaches
	2.2.2.3 Need for Active Learning
	2.2.2.4 Limitations of Existing Active Learning Techniques

	2.2.3 Next Query Prediction and Recommendation
	2.2.3.1 Intent Prediction for Interactive Data Exploration
	2.2.3.2 Query Recommendation and Autocompletion
	2.2.3.3 Latency Reduction for Data Exploration
	2.2.3.4 ML for Cardinality Estimation and Query Workload Generation
	2.2.3.5 Conversational Recommendation

	2.2.4 Cardinality Estimation
	2.2.4.1 Relational Cardinality Estimation
	2.2.4.2 Geospatial Cardinality Estimation
	2.2.4.3 Machine Learning for Cardinality Estimation
	2.2.4.4 Active Learning for Classification vs. Regression

	3 A Comprehensive Active Learning Benchmark Framework for Entity Matching
	3.1 Benchmark Overview
	3.2 Compared Approaches
	3.2.1 Query-by-committee (QBC)
	3.2.1.1 Tree-based Classifiers

	3.2.2 Margin
	3.2.2.1 Linear Classifiers
	3.2.2.2 Non-Convex Non-Linear Classifiers

	3.2.3 Likely False Positives / Negatives (LFP/LFN)

	3.3 Experimental Evaluation
	3.3.1 Experimental Settings
	3.3.2 Comparison of Classifiers in conjunction with Best Example Selectors
	3.3.3 Comparison with Supervised Learning
	3.3.4 #Labels for Convergence
	3.3.5 Interpretability: Rules vs. Trees

	4 Alfa: Active Learning for Semantic Schema Alignment
	4.1 Ontology Matching vs. Entity Matching
	4.2 Graph Neural Network for Ontology Matching
	4.3 System Architecture of Alfa
	4.3.1 Onto-aware Example Selector
	4.3.2 Onto-aware Label Propagator
	4.3.3 Onto-aware Blocking

	4.4 Baseline Example Selectors
	4.4.1 Entropy-based Selection
	4.4.2 Query-by-Committee
	4.4.3 OASIS

	4.5 Experimental Evaluation
	4.5.1 Experimental Setup
	4.5.1.1 Datasets
	4.5.1.2 Evaluation Metrics
	4.5.1.3 Baselines
	4.5.1.4 Configurations and Settings

	4.5.2 Evaluation of Ontology-Aware Sample Selection
	4.5.3 Evaluation of Ontology-Aware Label Propagation
	4.5.4 Evaluation of Semantic Blocking
	4.5.5 Alfa: End-to-End System Usability

	5 Evaluation of Machine Learning Algorithms for SQL Query Prediction
	5.1 Recurrent Neural Networks
	5.1.1 Historical-RNNs
	5.1.2 Synthesizing Next Query Fragment Vectors using RNN-Synth

	5.2 Reinforcement Learning
	5.2.1 Tabular Variant of Experience Replay and Random Action Exploration
	5.2.2 Prediction (Test) Phase
	5.2.3 Reward function
	5.2.4 Setting Learning Rate and Discount Factor

	5.3 Collaborative Filtering Baselines
	5.3.1 Cosine Similarity based CF
	5.3.2 Matrix Factorization based CF

	5.4 Datasets
	5.4.1 Session-Cleaning Heuristics

	5.5 Schema-aware Query Fragment Embeddings
	5.5.1 SQL Operator Fragments
	5.5.2 Selection Predicate Constants and Comparison Operators

	5.6 Parameter Settings
	5.7 Experimental Evaluation
	5.7.1 Results of Sustenance Evaluation
	5.7.1.1 Quality and Latency Results

	5.7.2 Results of Singularity Evaluation
	5.7.3 Query Re-generation and Result Comparison
	5.7.3.1 Query Re-generation
	5.7.3.2 Query Result Evaluation

	6 BI-REC: Guided Data Analysis for Conversational Business Intelligence
	6.1 Preliminaries
	6.1.1 A Conversational BI System
	6.1.2 Semantic Abstraction Layer (SAL)
	6.1.3 Modeling BI Patterns
	6.1.4 Modeling Prior User Interactions for
	6.1.5 Problem Definition for Conversational BI Recommendation

	6.2 System Overview of
	6.3 State Representation
	6.3.1 Graph-Structured State Representation
	6.3.2 Representation Learning on State Graphs
	6.3.2.1 State Graph Embedding Generation
	6.3.2.2 Representation Network Model Training

	6.4 BI Pattern Prediction
	6.5 Experimental Evaluation
	6.5.1 Dataset and Workloads
	6.5.1.1 Datasets
	6.5.1.2 Workloads

	6.5.2 Experimental Setup and Methodology
	6.5.2.1 Settings and Configuration
	6.5.2.2 Evaluation Metrics and Methodology
	6.5.2.3 Baselines

	6.5.3 BI-REC System Evaluation
	6.5.3.1 Performance on Different Workloads
	6.5.3.2 Exhaustive CF Baseline Comparison

	6.5.4 User Study
	6.5.5 BI-REC Component Evaluation
	6.5.5.1 Evaluation of State Representation
	6.5.5.2 Evaluation of Top-k BI Intent Prediction
	6.5.5.3 Evaluation of Top-k BI Pattern Prediction

	6.6 Appendix
	6.6.1 Implementation Details for IntentBI Predictors
	6.6.2 Workload generation: Real and Synthetic User Session Creation
	6.6.2.1 Ontology Graph Parsing and Augmentation
	6.6.2.2 Creation of Probability Distributions for Synthetic User Sessions
	6.6.2.3 Creation of Session Graphs

	6.6.3 Availability

	7 Learning Cardinality Estimation for Spatial Queries
	7.1 System Overview
	7.1.1 Supervised Cardinality Estimation
	7.1.1.1 Feature Extraction
	7.1.1.2 Regression Models

	7.1.2 Active Learning for Cardinality Estimation
	7.1.2.1 Example (Query) Selectors

	7.1.3 hybRID Selection of Spatial Queries
	7.1.3.1 Variants of hybRID

	7.2 Experimental Evaluation
	7.2.1 Experimental Setup
	7.2.1.1 Datasets and Query Workloads
	7.2.1.2 Evaluation Metrics
	7.2.1.3 Baselines
	7.2.1.4 Configurations and Settings

	7.2.2 Evaluation of Supervised Learning
	7.2.2.1 Comparison of SL approaches
	7.2.2.2 SL vs. SpSS

	7.2.3 Evaluation of Active Learning
	7.2.3.1 Comparison of AL selectors
	7.2.3.2 Comparison of regression models
	7.2.3.3 AL vs. SL

	7.2.4 Discussion
	7.2.4.1 Cost-Benefit Analysis
	7.2.4.2 Guidelines to Practitioners

	8 Conclusion and Future Work
	8.1 Human-in-the-loop Data Integration
	8.2 Human-in-the-loop Predictive Analytics

	References

