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Recent efforts in data cleaning of structured data have focused exclusively on problems like data deduplica-
tion, record matching, and data standardization; none of the approaches addressing these problems focus on
fixing incorrect attribute values in tuples. Correcting values in tuples is typically performed by a minimum
cost repair of tuples that violate static constraints like CFDs (which have to be provided by domain experts,
or learned from a clean sample of the database). In this paper, we provide a method for correcting individual
attribute values in a structured database using a Bayesian generative model and a statistical error model
learned from the noisy database directly. We thus avoid the necessity for a domain expert or clean master
data. We also show how to efficiently perform consistent query answering using this model over a dirty
database, in case write permissions to the database are unavailable. We evaluate our methods over both
synthetic and real data.
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1. INTRODUCTION
Although data cleaning has been a long standing problem, it has become critically im-
portant again because of the increased interest in big data and web data. Most of the
focus of the work on big data has been on the volume, velocity, or variety of the data;
however, an important part of making big data useful is to ensure the veracity of the
data. Enterprise data is known to have a typical error rate of 1–5% [Fan and Geerts
2012] (error rates of up to 30% have been observed). This has led to renewed interest
in cleaning of big data sources, where manual data cleansing tasks are seen as pro-
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hibitively expensive and time-consuming [Gray 2013], or the data has been generated
by users and cannot be implicitly trusted [Leslie 2010]. Among the various types of
big data, the need to efficiently handle large scaled structured data that is rife with
inconsistency and incompleteness is also more significant than ever. Indeed, multiple
studies, such as [Computing Research Association 2012] emphasize the importance of
effective, efficient methods for handling “dirty big data”.

Data cleaning is also of paramount importance in web-data scenarios. New and in-
novative methods of extracting tabular data from the web have shown how informative
and significant these sources of data can be [Cafarella et al. 2008]. A critical problem
with even the most cutting edge of these techniques [Zhang 2015] is the noise that
can get introduced during the extraction. This is where techniques such as the one we
describe in this paper can significantly improve the quality of web data.

Table I. A snapshot of car data extracted from cars.com using information
extraction techniques

TID Model Make Orig Size Engine Condition
t1 Civic Honda JPN Mid-size I4 NEW
t2 Focus Ford USA Compact I4 USED
t3 Civik Honda JPN Mid-size I4 USED
t4 Civic Ford USA Compact I4 USED
t5 Honda JPN Mid-size I4 NEW
t6 Accord Honda JPN Full-size V6 NEW

Most of the current data cleaning techniques are based on deterministic rules, which
have a number of problems: Suppose that the user is interested in finding ‘Civic’ cars
from Table I. Traditional data retrieval systems would return tuples t1 and t4 for the
query, because they are the only ones that are a match for the query term. Thus, they
completely miss the fact that t4 is in fact a dirty tuple — A Ford Focus car mislabeled as
a Civic. Additionally, tuples t3 and t5 would not be returned as result tuples since they
have typos or missing values, although they represent desirable results. The objective
of this work is to provide the true result set (t1, t3, t5) to the user.

Although this problem has received significant attention over the years in the tra-
ditional database literature, the state-of-the-art approaches fall far short of an effec-
tive solution for big data and web data. Traditional methods include outlier detection
[Knorr et al. 2000], noise removal [Xiong et al. 2006], entity resolution [Singla and
Domingos 2006; Xiong et al. 2006], and imputation [Fellegi and Holt 1976]. Although
these methods are efficient in their own scenarios, their dependence on clean master
data is a significant drawback.

Specifically, the state-of-the-art approaches (e.g., [Bohannon et al. 2005; Fan et al.
2009; Bertossi et al. 2011]) attempt to clean the data by exploiting the patterns in the
data, which they express in the form of CFDs (or Conditional Functional Dependen-
cies). In the motivating example, the fact that the Honda cars have ‘JPN’ as the origin of
the manufacturer would be an example of such a pattern. However, these approaches
depend on the availability of a clean data corpus or an external reference table to learn
the data quality rules or patterns before fixing the errors in the dirty data. Systems
such as ConQuer [Fuxman et al. 2005] depend upon a set of clean constraints provided
by the user. Such clean corpora or constraints may be easy to establish in a tightly con-
trolled enterprise environment but are infeasible for web data and big data. One may
attempt to learn the data quality rules directly from the noisy data. Unfortunately
however, our experimental evaluation in Figure 6(a) from Section 8.2 shows that even
small amounts of noise severely impairs the ability to learn useful constraints from
the data.

To avoid the dependence on the clean master data, we propose a novel system called
BayesWipe [De et al. 2014] that assumes that a statistical process underlies the gen-
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eration of clean data (which we call the data source model) as well as the corruption
of data (which we call the data error model). The noisy data itself is used to learn
the parameters of these generative and error models, eliminating the dependence on
the clean master data. Then, by treating the clean value as a latent random vari-
able, BayesWipe leverages these two learned models and automatically infers its value
through a Bayesian estimation. The Bayesian inference assigns confidence levels of
accuracy to the several possible clean replacement values which we call the candidate
set of clean alternatives.

Deterministic cleaning is ineffective as compared to BayesWipe for the following
reasons:

— Most of the rule based methods like (C)FDs cannot generate rules in the presence of
even a single violating tuple in the master data which is why they can learn close to
zero patterns (rules) from noisy data.

— AFDs (Approximate Functional Dependencies) can learn rules from noisy data but
they can suffer from other semantic inconsistencies when interactions are allowed
between rules. For example, applying transitivity between rules can lead to circular
reasoning and in some cases, can exaggerate the truth by overcounting the evidence
(Section 14.7.1 of [Russell and Norvig 2010]). This results in the need to carefully
doctoring the rules such that there is no interference among themselves to avoid
such inconsistencies.

— BayesWipe, in contrast, learns the generative model from the majority of the data
which makes it robust to the noise, thus enabling it to build its data source model
from dirty data, while also avoiding the problem of semantic inconsistencies. We also
present the crowdsourcing based experiments in Table IV from Section 8.2 to show
that the candidate clean tuples suggested by the generative model built upon the
dirty data are indeed accurate and are consistent with the clean replacements picked
by the human participants.

We designed BayesWipe so that it can be used in two different modes: a traditional
offline cleaning mode, and a novel online query processing mode. The offline cleaning
mode of BayesWipe follows the classical data cleaning model, where the entire data-
base is accessible and can be cleaned in situ. This mode is particularly useful when one
has complete control over the data, and a one-time cleaning of the data is needed. Data
warehousing scenarios such as the data crawled from the web, or aggregated from var-
ious noisy sources can be effectively cleaned in this mode. One of the features of the
offline mode of BayesWipe is that a PDB (probabilistic database) can be generated as
a result of the data cleaning. The cleaned data can be stored either in a determin-
istic database, or in a probabilistic database. If a probabilistic database is chosen as
the output mode, BayesWipe stores not only the clean version of the tuple it believes
to be most likely correct one, but the entire distribution over the possible clean tuples
available in the candidate set. The choice of a probabilistic output mode for the cleaned
tuples is most useful for those scenarios where recall is very important for further data
processing on the cleaned tuples.

Probabilistic databases are complex and unintuitive, because each single input tuple
is mapped into a distribution over resulting clean alternatives. We show how the top-k
results can be retrieved from a PDB while displaying the clean data that is compre-
hensible to the user.

The online query processing mode of BayesWipe is motivated by web data scenarios
where it is impractical to create a local copy of the data and clean it offline, either
due to large size, high frequency of change, or access restrictions. In such cases, the
best way to obtain clean answers is to clean the resultset as we retrieve it, which also
provides us the opportunity of improving the efficiency of the system, since we can now
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ignore entire portions of the database which are likely to be unclean or irrelevant to
the top-k results. BayesWipe uses a query rewriting system that enables it to efficiently
retrieve only those tuples that are important to the top-k result set. This rewriting
approach is inspired by, and is a significant extension of our earlier work on QPIAD
system for handling data incompleteness [Wolf et al. 2009]. In big data scenarios, clean
master data is rarely available, and write access is either unavailable, or undesirable
due to the efficiency and indexing concerns. The online mode is particularly suited to
get clean results in such cases.

We implement BayesWipe in a Map-Reduce architecture, so that we can run it very
quickly for massive datasets. The architecture for parallelizing BayesWipe is explained
more fully in Sec 7. In short, there is a two-stage map-reduce architecture, where in
the first stage, the dirty tuples are routed to a set of reducer nodes which hold the
relevant candidate clean tuples for them. In the second stage, the resulting candidate
clean tuples along with their scores are collated, and the best replacement tuple is
selected from them.

To summarize our contributions, we:

— Propose that data cleaning should be done using a principled, probabilistic approach.
— Develop a novel algorithm following those principles, which uses a Bayes network as

the generative model and maximum entropy as the error model of the data.
— Develop novel query rewriting techniques so that this algorithm can also be used in

a big data scenario.
— Develop a parallelized version of this algorithm using map-reduce framework.
— Empirically evaluate the performance of our algorithm using both controlled and real

datasets.

The rest of the paper is organized as follows. We begin by discussing the related
work and then describe the architecture of BayesWipe in the next section, where we
also present the overall algorithm. Section 4 describes the learning phase of Bayes-
Wipe, where we find the generative and error models. Section 5 describes the offline
cleaning mode, and the next section details the query rewriting and online data pro-
cessing. We describe the parallelized version of BayesWipe in Section 7 and the results
of our empirical evaluation in Section 8, and then conclude by summarizing our con-
tributions. Further details about BayesWipe can be found in the thesis [De 2014].
2. RELATED WORK
Much of the work in data cleaning focused on deterministic dependency relations
such as FDs (Functional Dependencies), CFDs (Conditional Functional Dependencies),
AFDs (Approximate Functional Dependencies) and INDs (Inclusion Dependencies).
Bohannon et al. proposed using CFDs to clean the data [Bohannon et al. 2007; Fan
et al. 2008]. Indeed, CFDs are very effective in cleaning the data. However, the pre-
cision and recall of cleaning the data with CFDs completely depends on the quality
of the set of dependencies used for cleaning. As our experiments show, learning CFDs
from dirty data produces very unsatisfactory results. In order for CFD-based methods
to perform well, they need to be learned from a clean sample of the database [Fan
et al. 2009] which must be large enough to be representative of all the patterns in the
data. Finding such a large corpus of clean master data is a non-trivial problem, and is
infeasible in all but the most controlled of environments (like a corporation with high
quality data).

A recent variant on the deterministic dependency based cleaning by J.Wang et al.
[Wang and Tang 2014] proposes using fixing rules containing negative and positive
patterns which indicate the possible errors and the corresponding clean replacements
respectively for an attribute. However, there can be several ways in which a tuple
can go wrong and the detection of the positive pattern requires clean master data.
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BayesWipe, on the other hand, uses an error model to detect the errors automatically
and clean them in the absence of clean master data. Recent work by J.Wang et al.
[Wang et al. 2014] plugs in one of the rule based cleaning techniques to clean a sample
of the data and use it as a guideline to clean the entire data. It is important to note
that this method only caters to aggregate numerical queries whereas the online mode
of BayesWipe supports selecting the actual clean values and can be easily extended to
support all kinds of queries.

Although it is possible to ameliorate some of the difficulties of CFD/AFD methods
by considering approximate versions of them, the work in the uncertainty in AI com-
munity demonstrated the semantic pitfalls of handling uncertainty in this way. In par-
ticular, approximate versions of CFDs/AFDs considered in works such as [Golab et al.
2008; Cormode et al. 2009] are similar to the certainty factors approaches for handling
uncertainty that were popular in the heyday of expert systems, but whose semantic
inconsistencies are by now well-established (see, for example, Section 14.7.1 of [Rus-
sell and Norvig 2010]). Because of this, in this paper we focus on a more systematic
probabilistic approach.

Even if a curated set of integrity constraints are provided, existing methods do not
use a probabilistically principled method of choosing a candidate correction. They re-
sort to either heuristic based methods, finding an approximate algorithm for the least-
cost repair of the database [Arenas et al. 1999; Bohannon et al. 2005; Cong et al. 2007];
using a human-guided repair [Yakout et al. 2011], or sampling from a space of possi-
ble repairs [Beskales et al. 2013b]. There has been work that attempts to guarantee a
correct repair of the database [Fan et al. 2010], but they can only provide guarantees
for corrections of those tuples that are supported by data from a perfectly clean mas-
ter database. Recently, [Beskales et al. 2013a] have shown how the relative trust one
places on the constraints and the data itself plays into the choice of cleaning tuples. A
Bayesian source model of data was used by [Dong et al. 2009], but was limited in scope
to figuring out the evolution over time of the data value.

Kubica and Moore [2003] describe an method for data cleaning with a data, noise
and corruption model. The corruption model determines which values in the database
are corrupt, and the noise model determines what values they are replaced with. Thus
fundamentally, their noise model is different; instead of modeling the corruption itself
like P (T |T ∗), they learn a generative noise: P (T )T is corrupt. At every iteration of their
EM algorithm, they split the data into two parts: a set of values presumably correct,
which they use to learn the clean model, and a set of values presumably corrupt, which
they use to learn the noise model. Certain well-known families of probability distribu-
tions (such as Gaussian and uniform distribution) are used for the models. During
the “learning” phase, they iteratively refine the parameters of these models. On the
other hand, we learn a sophisticated Bayesian network directly from the dirty data,
and profit from a comprehensive error model that mirrors common real-world errors.
This also allows us to support online querying over remote databases, something that
LENS cannot support.

Mayfield et al. [2009] describe a statistical data cleaning application where approx-
imate Bayesian inference is used as the underlying model for inferring clean values.
However, their work differs from ours in a number of important ways: first, they focus
on a domain where Shrinkage by convolution is possible. This means that it is possi-
ble to use a rule (like death age = death year − birth year) to vastly reduce the size of
the domain and learn CPDs from the examples. Such a method would not be applica-
ble to categorical data like makes and models of cars. Secondly, their approach does
not use an error model, and instead fixes values that are missing, or readily identi-
fied as outliers. By using a probabilistic error model, BayesWipe is able to treat every
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value in every tuple as possibly erroneous, and compute the probabilistically cleanest
correction.

Recent work has also focused on the metrics to be used to evaluate the data cleaning
techniques [Dasu and Loh 2012]. In this work, we focus on evaluating our method
against the ground truth (when the ground truth is known), and user studies (when
the ground truth is not known).

While BayesWipe uses crowdsourcing to evaluate the accuracy of the proposed clean
tuple alternatives for the experiments on real world datasets, there are other systems
that try to use the crowd for cleaning the data itself. X.Chu et al. [Chu et al. 2015]
clean the database tuples by discovering patterns that overlap with KB(Knowledge
Base)s like Yago and validating the top-k candidates using the crowd. J.Wang et al.
[Wang et al. 2012] perform entity resolution (which is to identify several values corre-
sponding to the same entity value) using crowdsourcing. They reduce the complexity
of the number of HIT (Human Intelligence Tasks) generated by clustering them into
several bins so that a set of pairs can be resolved at a time as against evaluating one
pair at a time. Y.Zheng et al. [Zheng et al. 2015] pick a set of k questions to be included
in the HITs for the human workers out of a total set of n questions using estimates on
the expected increase in the answer quality by assigning those questions to the crowd.
Crowdsourcing to perform data cleaning may be infeasible in the context of Big Data
cleaning targeted by BayesWipe . However, suggestions from the crowd can be used to
pre-clean a sample of the dirty data from which BayesWipe learns the Bayes network.

The query rewriting part of this work is inspired by the QPIAD system [Wolf et al.
2009], but significantly improves upon it. QPIAD performed query rewriting over in-
complete databases using AFDs, and only cleaned data with null values, not wrong
values. Arenas et al. show [Arenas et al. 1999] a method to generate rewritten queries
to obtain clean tuples from an inconsistent database. However, the query rewriting
algorithm in that paper is driven by the deterministic integrity dependencies, and not
the generative or error model. Since their system requires a set of curated determinis-
tic dependencies, it is not directly applicable to the problem solved in this work. Fur-
thermore, due to the use of Bayes networks to build the generative model, BayesWipe
is able to incorporate richer types of dependencies.

3. BAYESWIPE OVERVIEW
BayesWipe views the data cleaning problem as a statistical inference problem over tu-
ples of categorical data. In this paper, we support “select” queries on a single table D1

containing the dirty data. (An example of a select query represented as SQL might
be, “select * from db where make=‘honda’ and model=‘civic’ ”.) We do not support re-
lational data that spans multiple tables, however if it is possible to extract a view of
the relational data into a set of tuples, then BayesWipe can be operated on it. The
current system can be extended to support other relational operators like joins and
aggregates but that would more be an engineering exercise and is beyond the scope of
a single paper. This extension to support selection queries involving further database
operators can also handle the connectivity among web data when it can be effectively

1A few words are in order about the relational model we use. Although the linked structure of the web might
suggest a graphical model, relational model does apply quite widely for the web data. Structured data on
the web may appear explicitly in the form of tables, but they may also form the underlying data of millions
of web-pages, that can be scraped one or more tuples at a time. The extraction of meaningful relational data
from the web has been of significant research interest in the recent past [Zhang 2015; Weninger and Han
2013; Zhang et al. 2012; Hoffmann et al. 2011; Hoffmann et al. 2010; Cafarella et al. 2008]. In fact, spin-off
companies such as Lattice (https://lattice.io/) are especially geared towards deriving a structured represen-
tation of unstructured data. In addition to that, the popular representation of web data using RDF triples is
a proof enough to indicate the prevalence of structure on the web. By aiming BayesWipe at structured data,
we are providing a method to significantly improve the data quality of the web.
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represented using foreign keys over which the application of natural joins is straight-
forward. However, the current support offered to queries containing such operators is
to first execute them and store the materialized view in a table upon which BayesWipe
can be applied.

Let D = {T1, ..., Tn} be the input relation (like Table I) which contains a number of
corruptions. Ti ∈ D is a tuple with m attributes {A1, ..., Am} which may have one or
more corruptions in its attribute values. Given a candidate replacement set C for a
possibly corrupted tuple T in D, we can clean the database by replacing T with the
candidate clean tuple T ∗ ∈ C that has the maximum Pr(T ∗|T ). Using Bayes rule (and
dropping the common denominator), we can rewrite this to

T ∗best = argmax[Pr(T |T ∗)Pr(T ∗)] (1)

By replacing T with T ∗best, we get a deterministic database. If we wish to create a PDB
(probabilistic database), we do not take an argmax over the Pr(T ∗|T ), instead we store
the entire distribution over the T ∗ in the resulting PDB.

It is important to note that the candidate replacement set C is actually derived from
a sample of the dirty data using a generative model (explained in Section 4.1) as we do
not assume the availability of clean master data.

For online query processing we rewrite the user query Q∗ into Q, and find the rele-
vance score of a tuple T as

Score(T ) =
∑
T∗∈C

Pr(T ∗)︸ ︷︷ ︸
source model

Pr(T |T ∗)︸ ︷︷ ︸
error model

R(T ∗|Q∗)︸ ︷︷ ︸
relevance

(2)

In this work, we used a binary relevance model, where R is 1 if T ∗ is relevant to the
user’s query Q∗ and 0 otherwise. A tuple T ∗ is deemed relevant to Q∗ if it satisfies
the query constraints and can participate in the exact answer set of the query Q∗

executed on the relational table D. Note that R is the relevance of the query Q∗ to the
candidate clean tuple T ∗ and not the observed tuple T . An observed tuple T achieves
a high relevance Score(T ) if each of its candidate replacement tuples satisfy the query
Q∗ and have a high posterior probability Pr(T ∗|T ) of replacing T . This allows the
query rewriting phase of BayesWipe to rewrite a user query Q∗ into Q such that the
execution of the rewritten query Q retrieves tuples with the highest relevance Score(.)
with respect to the original query Q∗. The motivation behind rewriting Q∗ to Q is to
fetch clean query answers which are otherwise missed by executing the original query
and is explained in better detail in Section 6. The retrieval of the top-k tuples with a
high relevance score is to achieve the non-lossy effect of using a PDB without explicitly
rectifying the entire database.
Architecture:

Figure 1 shows the system architecture for BayesWipe. During the model learning
phase (Section 4), we first obtain a sample database by sending some queries to the
database. On this sample data, we learn the generative model of the data as a Bayes
network (Section 4.1). In parallel, we define and learn an error model which incorpo-
rates common kinds of errors (Section 4.2). We also create an index to quickly propose
candidate T ∗s.

We can then choose to do either offline cleaning (Section 5) or online query processing
(Section 6), as per the scenario. In the offline cleaning mode, we iterate over all the
tuples in the database and clean them one by one. We can choose whether to store
the resulting cleaned tuple in a deterministic database (where we store only the T ∗
with the maximum posterior probability) or probabilistic database (where we store
the entire distribution over the T ∗). In the online query processing mode, we obtain a
query from the user, and do query rewriting in order to find a set of queries that are
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Data Source

Database 
Sampler

Data source 
model

Error 
Model

Candidate 
Set Index

Cleaning to a 
Deterministic DB

Query 
Rewriting

Clean
Data

Model Learning

Cleaning to a 
Probabilistic DB

Offline Cleaning

Query Processing

Result 
Ranking

OR

or

Fig. 1. The architecture of BayesWipe. Our framework learns both data source model and error model from
the raw data during the model learning phase. It can perform offline cleaning or query processing to provide
clean data.

likely to retrieve a set of highly relevant tuples. We execute these queries and re-rank
the results, and then display them.

4. MODEL LEARNING

Make Condition

Model Year

Drivetrain Door

Engine Car Type

Occupation Country

Gender
Working 

Class
Race

Education

Marital 
Status

Filing 
Status

(a) (b)

Tuple Id Make Model Condition Year Drivetrain Engine Car Type Doors

T* Honda Civic NEW 2015 FWD I6 Hybrid 4

Pr(T*) = Pr(Make = Honda) Pr(Condition = NEW) Pr(Model = Civic | Make = Honda, Condition = NEW)
Pr (Year = 2015 | Condition = NEW) Pr(Drivetrain = FWD | Model = Civic)
Pr(Door = 4) Pr(Engine = I6 | Drivetrain = FWD)
Pr(Car Type = Hybrid | Drivetrain = FWD, Door = 4)

Fig. 2. The learned Bayes networks

This section details the process by which we estimate the components of Equation 2:
the data source model Pr(T ∗) and the error model Pr(T |T ∗).

4.1. Data Source Model
Our data source model is a generative model built from a sample of the dirty data, D.
It computes a statistical measure in the form of a joint prior probability, Pr(T ∗), for
each tuple T ∗ in D which is is used along with the error likelihood from Section 4.2 to
estimate its effectiveness in cleaning a dirty tuple T .
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The data that we work with can have dependencies among various attributes For
example, a car’s engine depends on its make, since cars made by the same manufactur-
ers tend to use the engines of the same type. Although the engine does not exclusively
determine the make of the car, we rely upon additional information in the form of prob-
abilities which represent the strength of such dependencies among attributes. It helps
us in disregarding manufacturers who do not use common engines like I4 and V6 as
their joint probabilities fall very low. Therefore, we represent the data source model as
a Bayes network, since it naturally captures relationships between the attributes via
structure learning and infers probability distributions over values of the input tuples.

Constructing a Bayes network over D requires two steps: first, the induction of the
graph structure of the network, which encodes the conditional independences between
the m attributes of D’s schema; and second, the estimation of the parameters of the
resulting network. The resulting model allows us to compute probability distributions
over an arbitrary input tuple T .

Whenever the underlying patterns in the source database changes, we have to learn
the structure and parameters of the Bayes network again. In our scenario, we observed
that the structure of a Bayes network of a given dataset remains constant with small
perturbations, but the CPTs (Conditional Probability Tables) change more frequently.
As a result, we spend a larger amount of time learning the structure of the network
with a slower, but more accurate tool, Banjo [Hartemink. 2005]. Figure 2 shows auto-
matically learned structures for two data domains. The learned structure seems to be
intuitively correct, since the nodes that are connected (for example, ‘country’ and ‘race’
in Figure 2(b)) are expected to be highly correlated2.

Then, given a learned graphical structure G of D, we can estimate the CPTs that
parameterize each node in G using a faster package called Infer.NET [Minka et al.
2010]. This process of inferring the parameters is run offline, but more frequently than
the structure learning.

Once the Bayesian network is constructed, we can infer the joint distributions for an
arbitrary tuple T ∗. This distribution can be decomposed to the multiplication of several
conditional distributions of the sets of random variables, conditioned on their parent
nodes depending on G. Figure 2(a) has an example tuple T ∗ for which the attribute
correlations are derived from the Bayes network structure and the joint probability
is computed from the conditional probabilities available in the accompanying CPT.
Since the Bayes network is learnt from the dirty data, each source model tuple T ∗ is
implicitly weighted by its prior probability Pr(T ∗) (and its error likelihood based on
the distance from the observed dirty tuple T , explained in Section 4.2) which can act as
an estimate of the confidence with which the Bayes network supports the generation of
this tuple as a clean candidate. In other words, a tuple from the data sample with a low
prior probability (and a low error likelihood) is unlikely to act as a clean replacement
for a dirty tuple.

4.2. Error Model
Having described the data source model, we now turn to the estimation of the error
model Pr(T |T ∗) from the noisy data. There are many types of errors that can occur
in the data. We focus on some of the most common types of errors that occur in the
data that is manually entered by naı̈ve users: typos, deletions, and substitution of one
word with another. However, we are not dealing with errors that occur in the entry
of long-form text, such as common spelling mistakes with everyday English words, or
parsing and unit conversion errors. We particularly focus on categorical, tabular data.

2Note that the direction of the arrow in a Bayes network does not necessarily determine causality, see
Chapter 14 from Russell and Norvig [Russell and Norvig 2010].

ACM Journal of Data and Information quality, Vol. V, No. N, Article XXXX, Publication date: September 2016.



XXXX:10 S. De et al.

Other types of common errors such as those due to encoding problems, or format-
ting issues can be tackled by straightforward applications of rule-based scripts or ETL
tools. Raman and Hellerstein [2001] mention the prevalent use of ETL tools like Data
Junction and DataStage to transform data into a unified encoding format. They use a
GUI-aided interactive transformation step to quickly build a custom script to fix the
encoding errors. Kandel et al. also propose the use of richer visual interfaces for trans-
formation techniques to address the encoding errors in columns such as ‘Date’ [Kandel
et al. 2011]. We will assume in this work that such pre-processing has already been
done on the data if necessary, and consider those types of errors to be out of scope for
this work.

The error model we currently use can be further extended to include more complex
errors. Nevertheless we show in Section 8 two sets of experiments: one in which we
synthetically introduce the errors as per the error model and another in which the nat-
urally occurring data is considered without a controlled error model. The percentage of
the tuples cleaned in the latter case as shown in Table IV shows that our error model is
indeed relevant and it is further corroborated by the opinion of the crowd using which
we evaluate our cleaning performance. We also make two assumptions: First, that the
same type of error does not occur so frequently that it is replicated more often than
the correct value. In such a (albeit extremely unlikely) case, the model learner will
learn the erroneous value as the right one. Our second assumption is that an error in
the value of one attribute does not affect the errors in the values of other attributes.
This is a reasonable assumption to make, since we are allowing the data itself to have
dependencies between attributes, while only constraining the error process to be in-
dependent across attributes. With these assumptions, we are able to come up with a
simple and efficient error model, where we combine the three types of errors using a
maximum entropy model.

Given a set of clean candidate tuples C where T ∗ ∈ C, our error model Pr(T |T ∗)
essentially measures how clean T is, or in other words, how similar T is to T ∗.
Edit distance similarity: This similarity measure is used to detect spelling errors.
Edit distance between two strings TAi and T ∗Ai

is defined as the minimum cost of edit
operations applied to a dirty tuple TAi in order to transform it to a clean tuple, T ∗Ai

. Edit
operations include character-level copy, insert, delete and substitute. The cost for each
operation can be modified as required; in this paper we use the Levenshtein distance,
which uses a uniform cost function. This gives us a distance, which we then convert to
a probability using [Ristad and Yianilos 1998]:

fed(TAi , T
∗
Ai
) = exp{−costed(TAi , T

∗
Ai
)} (3)

Distributional Similarity Feature: This similarity measure is used to detect both
substitution and omission errors (null input values representing omissions). Looking
at each attribute in isolation is not enough to fix these errors. We propose a context-
based similarity measure called Distributional similarity (fds), which is based on the
probability of replacing one value with another under a similar context [Li et al. 2006].
Formally, for each string TAi

and T ∗Ai
, we have:

fds(TAi
, T ∗Ai

) =
∑

c∈C(TAi
,T∗

Ai
)

Pr(c|T ∗Ai
)Pr(c|TAi)Pr(TAi)

Pr(c)
(4)

where C(TAi
, T ∗Ai

) is the context of a tuple attribute value, which is a set of attribute
values that co-occur with both TAi and T ∗Ai

. Pr(c|T ∗Ai
) = (#(c, T ∗Ai

) + µ)/#(T ∗Ai
) is the

probability that a context value c appears given the clean attribute T ∗Ai
in the sample

database. Similarly, P (TAi
) = #(TAi

)/#tuples is the probability that a dirty attribute
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value appears in the sample database. We calculate Pr(c|TAi) and Pr(TAi) in the same
way. To avoid zero estimates for attribute values that do not appear in the database
sample, we use Laplace smoothing factor µ.
Unified error model: In practice, we do not know beforehand which kind of error has
occurred for a particular attribute; we need a unified error model which can accom-
modate all three types of errors (and be flexible enough to accommodate more errors
when necessary). For this purpose, we use the well-known maximum entropy frame-
work [Berger et al. 1996] to leverage both the similarity measures, (Edit distance fed
and distributional similarity fds). For each attribute of the input tuple T and T ∗, we
have the unified error model Pr(T |T ∗) given by:

1

Z
exp

{
α

m∑
i=1

fed(TAi
, T ∗Ai

) + β

m∑
i=1

fds(TAi
, T ∗Ai

)

}
(5)

where α and β are the weight of each feature,m is the number of attributes in the tuple.
The normalization factor is Z =

∑
T∗ exp {

∑
i λifi(T

∗, T )}, where λi is the weight of the
i-th feature. We explain how to set the values of α and β in Section 5.1 and experiment
with it in Figure 6(c).

4.3. Finding the Candidate Set
The set of candidate tuples, C(T ) for a given tuple T are the possible replacement
tuples that the system considers as possible corrections to T . The larger the set C
is, the longer it will take for the system to perform the cleaning. If C contains many
unclean tuples, then the system will waste time scoring tuples that are not clean to
begin with. It should be noted that we also add the tuple itself, T , to the set of the
candidate tuples.

An efficient approach to finding a reasonably clean C(T ) is to consider the set of all
the tuples in the sample database that differ from T in not more than j attributes.
In order to find C(T ) that satisfies this, conceptually, we have to iterate over every
tuple t in the sample database D, comparing it to the tuple T and checking how many
attributes it differs in. This operation can take O(n) time, where n is the number of
tuples in the sample database. Even with j = 3, the naı̈ve approach of constructing C
from the sample database directly is too time consuming, since it requires one to go
through the sample database in its entirety once for every result tuple encountered.
To make this process faster, we create indices over (j+1) attributes because searching
through indices reduces the number of comparisons required to compute C(T ). If any
candidate tuple T ∗ differs from T in less than or equal to j attributes, then it will
be present in at least one of the indices, since we created j + 1 of them (pigeon hole
principle). These j + 1 indices are created over those attributes that have the highest
cardinalities, such as Make and Model (as opposed to attributes like Condition and
Doors which can take only a few values). This ensures that the set of tuples returned
from the index would be small in number.

For every possibly dirty tuple T in the database, we go over each such index and find
all the tuples that match the corresponding attribute. The union of all these tuples
is then examined and the candidate set C is constructed by keeping only those tuples
from this union set that do not differ from T in more than j attributes. Thus we can be
sure that by using this method, we have obtained the entire set C 3.

3There is a small possibility that the true tuple T ∗ is not in the sample database at all. This probability can
be reduced by choosing a larger sample set. In future work, we will expand the strategy of generating C to
include all possible k-repairs of a tuple.
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5. OFFLINE CLEANING
In Algorithm 1, we present the offline mode of BayesWipe. We show how we iterate
over all the tuples in the dirty database, D and replace them with cleaned tuples.

ALGORITHM 1: The algorithm for offline data cleaning
Input: D, the dirty dataset.
BN ← Learn Bayes Network (D)
foreach Tuple T ∈ D do
C ← Find Candidate Replacements (T )
foreach Candidate T ∗ ∈ C do

P (T ∗)← Find Joint Probability (T ∗, BN )
P (T |T ∗)← Error Model (T, T ∗)

end
T ← arg max

T∗∈C
P (T ∗)P (T |T ∗)

end

5.1. Cleaning to a Deterministic Database
In order to clean the data in situ, we first use the techniques of the previous section
to learn the data source model, the error model and create the index. Then, we iterate
over all the tuples in the database and use Equation 1 to find the T ∗ with the best
score. We then replace the tuple with that T ∗, thus creating a deterministic database
using the offline mode of BayesWipe.

Computing Pr(T ∗)Pr(T |T ∗) is very fast. Even though we do a Bayesian inference
for Pr(T ∗), the tuple has all the values specified, so the inference ends up being a
simple multiplication over the CPTs of the Bayes network, and is very cheap. Pr(T |T ∗)
involves simple edit distance and distributional similarity calculations all of which
involve simple arithmetic operations and lookups devoid of Bayesian inference.

Recall from Section 4.2 that there are parameters in the error model called α and β,
which need to be set. Interestingly, in addition to controlling the relative weight given
to the various features in the error model, these parameters can be used to control
overcorrection by the system.
Overcorrection: Any data cleaning system is vulnerable to overcorrection, where
a legitimate tuple is modified by the system to an unclean value. Overcorrection can
have many causes. In a traditional, deterministic system, overcorrection can be caused
by erroneous rules learned from infrequent data. For example, certain makes of cars
are all owned by the same conglomerate (GM owns Chevrolet). In a misguided attempt
to simplify their inventory, a car salesman might list all the cars under the name of
the conglomerate. This may provide enough support to learn the wrong rule (Malibu→
GM).

Typically, once an erroneous rule has been learned, there is no way to correct it or
ignore it without a lot of oversight from domain experts. However, BayesWipe provides
a way to regulate the amount of overcorrection in the system with the help of a ‘degree
of change’ parameter. Without loss of generality, we can rewrite Equation 5 to the
following:

Pr(T |T ∗) = 1

Z
exp

{
γ
(
δ

m∑
i=1

fed(TAi
, T ∗Ai

)

+ (1− δ)
m∑
i=1

fds(TAi
, T ∗Ai

)
)}
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Since we are only interested in their relative weights, the parameters α and β have
been replaced by δ and (1 − δ) with the help of a normalization constant, γ. This pa-
rameter, γ, can be used to modify the degree of variation in Pr(T |T ∗). High values of
γ imply that small differences in T and T ∗ cause a larger difference in the value of
Pr(T |T ∗), causing the system to give higher scores to the original tuple (compared to
a modified tuple). Hence, γ is the overcorrection parameter which regulates the extent
to which the original tuple T is modified, thus preserving the original tuple. δ is the
relative weight assigned to the edit distance similarity as against (1 − δ) assigned to
the distributional similarity.

Example: Consider the following fragment from the database. The first tuple is a
very frequent tuple in the database, the second one is an erroneous tuple, and the
third tuple is an infrequent, correct tuple. The ‘true’ correction of the second tuple is
the third tuple. The Pr(T ∗) values shown reflect the values that the data source model
might predict for them, roughly based on the frequency with which they occur in the
source data.

Id Make Model Type Engine Condition P (T ∗)

1 Honda Civic Sedan I4 New 0.400
2 Honda 750 Sedan V8 New 0.001
3 BMW 750 Sedan V8 New 0.005

A proper data cleaning system will correct tuple 2 to tuple 3, and not modify any of
the others. However, if incorrect rules (for example, 750→ Honda) were learned, there
could be overcorrection, where tuple 3 is modified to tuple 2.

On the other hand, BayesWipe handles this situation based on the value of γ. Look-
ing at tuple 3 (which is a clean tuple), suppose the candidate replacement tuples for it
are also tuples 1, 2 and 3. In that case, the situation may look like the following:

low γ high γ
Candidate P (T ∗) P (T |T ∗) score P (T |T ∗) score

1 0.400 0.02 0.0080 0.002 0.00080
2 0.001 0.30 0.0003 0.030 0.00003
3 0.005 1.00 0.0050 1.000 0.00500

As we can see, if we choose a low value of γ, the candidate with the highest score is
tuple 1, which means an overcorrection will occur. However, with higher γ, the candi-
date with the highest score is tuple 3 itself, which means the tuple will not be modified,
and overcorrection will not occur. On the other hand, if we set γ too high, then even
legitimately dirty tuples like tuple 2 will not get changed, thus the number of actual
corrections will also be lower.

To make full use of this capability of regulating overcorrection, we need to be able
to set the value of γ appropriately. In the absence of a training dataset (for which the
ground truth is known), we can only estimate the best γ approximately. We do this by
finding a value of γ for which the percentage of tuples modified by the system is equal
to the expected percentage of noise in the dataset.

5.2. Cleaning to a Probabilistic Database
We note that many data cleaning approaches — including the one we described in the
previous sections — come up with multiple alternatives for the clean version for any
given tuple, and evaluate their confidence in each of the alternatives. For example, if
a tuple is observed as ‘Honda, Corolla’, two correct alternatives for that tuple might be
‘Honda, Civic’ and ‘Toyota, Corolla’. In such cases, where the choice of the clean tuple is
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not an obvious one, picking the most-likely option may lead to the wrong answer. Addi-
tionally, if we intend to do further processing on the results, such as perform aggregate
queries, join with other tables, or transfer the data to someone else for processing, then
storing the most likely outcome is lossy.

A better approach (also suggested by others [Computing Research Association 2012])
is to store all of the alternative clean tuples along with their confidence values. Do-
ing this, however, means that the resulting database will be a probabilistic database
(PDB), even when the source database is deterministic.

It is not clear upfront whether PDB-based cleaning will have advantages over clean-
ing to a deterministic database. On the positive side, using a PDB helps reduce loss
of information arising from discarding all alternatives to tuples that did not have the
maximum confidence. On the negative side, PDB-based cleaning increases the query
processing cost (as querying PDBs are harder than querying deterministic databases
[Dalvi and Suciu 2004]).

Another challenge is one of presentation: users usually assume that they are deal-
ing with a deterministic source of data, and presenting all alternatives to them can be
overwhelming to them. In this section, and in the associated experiments, we investi-
gate the potential advantages to using the BayesWipe system and storing the resulting
cleaned data in a probabilistic database. For our experiments, we used Mystiq [Boulos
et al. 2005], a prototype probabilistic database system from University of Washington,
as the substrate. In order to create a probabilistic database from the corrections of the
input data, we follow the offline cleaning procedure described previously in Section 4.
Instead of storing the most likely T ∗, we store all the T ∗s along with their P (T ∗|T ) val-
ues. When evaluating the performance of the probabilistic database, we used simple
select queries on the resulting database. Since representing the results of a probabi-
listic database to the user is a complex task, in this paper we focus on showing the
XOR representation of the tuple alternatives to the user. The rationale for our decision
is that in a used car scenario, the user will be provided with a URL link to the car
through the clickable tuple id and the several alternative clean values for the dirty
attributes are shown within the single tuple returned to the user. As a result, the form
of our output is a tuple-disjoint independent database [Suciu and Dalvi 2005]. This
can be better explained with an example:

Table II. Cleaned probabilistic database

TID Model Make Orig. Size Eng. Cond. P

t1
Civic Honda JPN Mid-size I4 NEW 0.6
Civic Honda JPN Compact V6 NEW 0.4

...

t3
Civic Honda JPN Mid-size I4 USED 0.9
Civik Honda JPN Mid-size I4 USED 0.1

Example: Suppose we clean our running example of Table I. We will obtain a tuple-
disjoint independent4 probabilistic database [Suciu and Dalvi 2005]; a fragment of
which is shown in Table II. Each original input tuple (t1, t3), has been cleaned, and
their alternatives are stored along with the computed confidence values for the alter-
natives (0.6 and 0.4 for t1, in this example). Suppose the user issues a query Model =
Civic. Both options of tuple t1 of the probabilistic database satisfy the constraints of the
query. Since there are two valid alternatives to tuple t1 in the result with probabilities

4A tuple-disjoint independent probabilistic database is one where every tuple, identified by its primary
key, is independent of all other tuples. Each tuple is, however, allowed to have multiple alternatives with
associated probabilities. In a tuple-independent database, each tuple has a single probability, which is the
probability of that tuple existing.
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0.6 and 0.4, in order to get a single tuple representation, the matching attributes in
the alternatives are shown deterministically whereas the unclean attributes like Size,
Engine and Condition with several possible clean values are shown as options. Only
the first option in tuple t3 matches the query. Thus the XOR result will contain only
a single alternative for t3 with probability 0.9. It is important to note that in the case
of t1, the Mid-size car can be associated with an Eng. value of I4 and a probability
of 0.6 respectively. The XOR representation does not necessarily allow for combining
Mid-size with either an Eng. value of V6 or a probability value of 0.4.

The experimental results compare the tuple ids when computing the recall of the
method because tuple id provides the URL to the car’s web page which can be used to
determine a match. The output probabilistic relation is shown in Table III.

Table III. Result probabilistic database

TID Model Make Orig. Size Eng. Cond. P

t1 Civic Honda JPN Mid-
size/Compact I4/I6 NEW 0.6/0.4

t3 Civic Honda JPN Mid-size I4 USED 0.9

The interesting fact here is that the result of any query will always be a tuple-
independent database. This is because we projected out every attribute except for the
tuple-ID, and the tuple-IDs are independent of each other.

When showing the results of our experiments, we evaluate the precision and recall
of the system. Since precision and recall are deterministic concepts, we have to convert
the probabilistic database into a deterministic database (that will be shown to the user)
prior to computing these values. We can do this conversion in two ways: (1) by picking
only those tuples whose probability is higher than some threshold. We call this method
the threshold based determinization. (2) by picking the top-k tuples and discarding the
probability values (top-k determinization). The experiment section (Section 8.2) shows
results with both determinizations.

6. QUERY REWRITING FOR ONLINE QUERY PROCESSING
In online query processing, we are primarily concerned with the scenario where the
entire database is not available for cleaning: either due to access controls or due to
size or frequency of change. In these cases, we only consider the problem of simple
keyword queries over the data. More complex queries such as aggregates and joins
require a comprehensive traversal of the dataset, which is by-definition hard in an
online query scenario.

Algorithm 2 presents the online cleaning mode of BayesWipe. The first three oper-
ations comprising the sampling of the data, creation of the Bayes network from the
sampled data, and the generation of error statistics are performed offline, and the re-
maining operations show how the tuples are efficiently retrieved from the database,
ranked and displayed to the user. In this section we extend the techniques of the pre-
vious section so that it can be used in an online query processing method where the
result tuples are cleaned at query time. Certain tuples that do not satisfy the query
constraints, but are relevant to the user, need to be retrieved, ranked and shown to the
user. The process also needs to be efficient, since the time that the users are willing
to wait before results are shown to them is very small. We show our query rewriting
mechanisms aimed at addressing both.

We begin by executing the user’s query (Q∗) on the database. We store the retrieved
results, but do not show them to the user immediately. We then find rewritten queries
that are most likely to retrieve clean tuples. We do that in a two-stage process: we first

ACM Journal of Data and Information quality, Vol. V, No. N, Article XXXX, Publication date: September 2016.



XXXX:16 S. De et al.

ALGORITHM 2: Algorithm for online query processing.
Input: D, the dirty dataset
Input: Q, the user’s query
S ← Sample the source dataset D
BN ← Learn Bayes Network (S)
ES ← Learn Error Statistics (S)
R← Query and score results (Q,D,BN )
ESQ← Get expanded queries (Q)
foreach Expanded query E ∈ ESQ do

R← R∪ Query and score results (E,D,BN )
RQ← RQ∪ Get all relaxed queries (E)

end
Sort(RQ) by expected relevance, using ES
while top-k confidence not attained do

B ← Pick and remove top RQ
R← R∪ Query and score results (B,D,BN )

end
Sort(R) by score
return R

expand the query to increase the precision, and then relax the query by deleting some
constraints (to increase the recall).

In the online query mode, we should take care to re-sample and relearn the model of
the data occasionally, especially if it is suspected that the underlying model or charac-
teristic of the data has changed. Such changes do occur in online data sources.

6.1. Increasing the precision of rewritten queries
We can improve precision by adding relevant constraints to the query Q∗ given by
the user. For example, when a user issues the query Model = Civic, we can expand
the query to add relevant constraints Make = Honda, Country = Japan, Size = Mid-Size.
These additions capture the essence of the query — because they limit the results to
the specific kind of car the user is probably looking for. These expanded structured
queries generated from the user’s query are called ESQs. Querying using ESQs helps
in eliminating t4 from the results in the motivating example from Table I in Section 1.
This is because, it includes additional relevant constraints though the selection query
constraint is only with respect to the attribute Model.

Each user query Q∗ is a select query with one or more attribute-value pairs as con-
straints. In order to create an ESQ, we will have to add highly correlated constraints
to Q∗.

Searching for correlated constraints to add requires Bayesian inference, which is an
expensive operation. Therefore, when searching for constraints to add to Q∗, we re-
strict the search to the union of all the attributes in the Markov blanket [Pearl 1988].
The Markov blanket of an attribute comprises its children, its parents, and its chil-
dren’s other parents. It is the set of attributes whose value being given, the node be-
comes independent of all other nodes in the network. Thus, it makes sense to consider
these nodes when finding correlated attributes. This correlation is computed using the
Bayes Network that was learned offline on a sample database (recall the architecture
of BayesWipe in Figure 1.)

Given a Q∗, we attempt to generate multiple ESQs that maximizes both the rele-
vance of the results and the coverage of the queries of the solution space.

Note that if there are m attributes, each of which can take n values, then the total
number of possible ESQs is nm. Searching for the ESQ that globally maximizes the ob-
jectives in this space is infeasible; we therefore approximately search for it by perform-
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ing a heuristic-informed search. Our objective is to create an ESQ with m attribute-
value pairs as constraints.We begin with the constraints specified by the user query
Q∗. We set these as evidence in the Bayes network, and then query the Markov blanket
of these attributes for the attribute-value pairs with the highest posterior probability
given this evidence. We take the top-k attribute-value pairs and append them to Q∗
to produce k search nodes, each search node being a query fragment. If Q has p con-
straints in it, then the heuristic value of Q is given by Pr(Q)m/p. This represents the
expected joint probability of Q when expanded to m attributes, assuming that all the
constraints will have the same average posterior probability. We expand them further,
until we find k queries of size m with the highest probabilities.

Make=
Honda

Model=
Civic

Model=
Accord

Fuel=
Gas

Model=
Civic

Doors=
4

Engine=
I4

Miles=
10k

…

…

…

…

Make=Honda

Make=Honda, Model = Accord

Make=Honda, Model = Civic

Make=Honda, Fuel = Gas

0.4

0.3

0.9

0.1

(0.1)6

(0.1 × 0.4)3

(0.1 × 0.3)3

(0.1 × 0.9)3

Fig. 3. Query Expansion Example. The tree shows the candidate constraints that can be added to a query,
and the rectangles show the expanded queries with the computed probability values.

Example: In Figure 3, we show an example of the query expansion. The node on
the left represents the query given by the user “Make=Honda”. First, we look at the
Markov Blanket of the attribute Make, and determine that Model and Fuel are the
nodes in the Markov blanket. we then set “Make=Honda” as evidence in the Bayes
network and then run an inference over the values of the attribute Model. The two
values of the Model attribute with the highest posterior probability are Accord and
Civic. The most probable values of the Fuel attribute are “Gas” and “Electricity”. Us-
ing each of these values, new queries are constructed and added to the queue. Thus,
the queue now consists of the 4 queries: “Make=Honda, Model=Civic”, “Make=Honda,
Model=Accord” and “Make=Honda, Fuel=Gas”. A fragment of these queries are shown
in the middle column of Figure 3. We dequeue the highest probability item from the
queue and repeat the process of setting the evidence, finding the Markov Blanket,
and running the inference. We stop when we get the required number of ESQs with a
sufficient number of constraints.
6.2. Increasing the recall
Adding constraints to the query causes the precision of the results to increase, but
reduces the recall drastically. Therefore, in this stage, we choose to delete some con-
straints from the ESQs, thus generating the relaxed queries (RQ). Notice that the
tuples that have corruptions in the attribute constrained by the user can only be re-
trieved by relaxed queries that do not specify a value for those attributes. Instead, we
have to depend on rewritten queries that contain correlated values in other attributes
to retrieve these tuples. Querying using RQs helps in including t3 and t5 in the results
in the motivating example from Table I in Section 1. This is because, the selection con-
straint on the attribute Model is eliminated in the relaxed query and the correlated
constraints on other attributes are considered to retain precision while enhancing the
recall. Using relaxed queries can be seen as a trade-off between the recall of the result-
set and the time taken, since there are an exponential number of relaxed queries for
any given ESQ. As a result, an important question is the choice of RQs to execute. We
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take the approach of generating every possible RQ, and then ranking them according
to their expected relevance. This operation is performed entirely on the learned error
statistics, and is thus very fast.

We score each relaxed query by the expected relevance of its result set.

Rank(q) = E

(∑
Tq

Score(Tq|Q∗)
|Tq|

)
where Tq are the tuples returned by a query q, and Q∗ is the user’s query. Executing an
RQ with a higher rank will have a more beneficial impact on the result set because it
will bring in better quality result tuples. Estimating this quantity is difficult because
we do not have complete information about the tuples that will be returned for any
query q. The best we can do, therefore, is to approximate this quantity.

Let the relaxed query be Q, and the expanded query that it was relaxed from be
ESQ. We wish to estimate E[P (T |T ∗)] where T are the tuples returned by Q. Using the
attribute-error independence assumption, we can rewrite that as

∏m
i=0 Pr(T.Ai|T ∗.Ai),

where T.Ai is the value of the i-th attribute in T. Since ESQ was obtained by expand-
ing Q∗ using the Bayes network, it has values that can be considered clean for this
evaluation. Now, we divide the m attributes of the database into 3 classes: (1) The at-
tribute is specified both in ESQ and in Q. In this case, we set Pr(T.Ai|T ∗.Ai) to 1, since
T.Ai = T ∗.Ai. (2) The attribute is specified in ESQ but not in Q. In this case, we know
what T ∗.Ai is, but not T.Ai. However, we can generate an average statistic of how often
T ∗.Ai is erroneous by looking at our sample database. Therefore, in the offline learning
stage, we precompute tables of error statistics for every T ∗ that appears in our sample
database, and use that value. (3) The attribute is not specified in either ESQ or Q. In
this case, we know neither the attribute value in T nor in T ∗. We, therefore, use the
average error rate of the entire attribute as the value for Pr(T.Ai|T ∗.Ai). This statistic
is also precomputed during the learning phase. This product gives the expected rank
of the tuples returned by Q.

Civic Honda JPN Mid-size I4

Honda JPN I4

Q*:

ESQ:

RQ:

E[P(T|T*)]: 0.8 1 1 0.5 1 0.5

=0.2

Model Make Country Type Engine Cond.

Civic

Fig. 4. Query Relaxation Example.

Example: In Figure 4, we show an example for finding the probability values of a
relaxed query. Assume that the user’s query Q∗ is “Civic”, and the ESQ is shown in
the second row. For an RQ that removes the attribute values “Civic” and “Mid-Size”
from the ESQ, the probabilities are calculated as follows: For the attributes “Make,
Country” and “Engine”, the values are present in both the ESQ as well as the RQ, and
therefore, the P (T |T ∗) for them is 1. For the attribute “Model” and “Type”, the values
are present in ESQ but not in RQ, hence the value for them can be computed from the
learned error statistics. For example, for “Civic”, the average value of P (T |Civic) as
learned from the sample database (0.8) is used. Finally, for the attribute “Condition”,
which is present neither in ESQ nor in RQ, we use the average error statistic for that
attribute (i.e. the average of P (Ta|T ∗a ) for a = “Condition” which is 0.5).
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The final value of E[P (T |T ∗)] is found from the product of all these attributes as 0.2.
This process is very fast because it only involves lookups and multiplication – bayesian
inference is not needed.
6.3. Terminating the process
We begin by looking at all the RQs in descending order of their rank. If the current
k-th tuple in our resultset has a relevance of λ, and the estimated rank of the Q we are
about to execute isR(Tq|Q), then we stop evaluating any more queries if the probability
Pr(R(Tq|Q) > λ) is less than some user defined threshold P. This ensures that we have
the true top-k resultset with a probability P.
7. MAP-REDUCE FRAMEWORK
BayesWipe is most useful for big-data related scenarios. BayesWipe has two modes:
online and offline. The online mode of BayesWipe already works for big data scenarios
by optimising the rewritten queries it issues. Now, we show that the offline mode can
also be optimized for a big-data scenario by implementing it as a Map-Reduce applica-
tion. In this section, we aim to show that BayesWipe can indeed be parallelized using a
Map-Reduce framework and explain how it can be done. Our aim is not necessarily to
show the optimization for efficiency and hence, the associated experiments were run on
sample datasets using a natively implemented Map-Reduce framework in C# and not
on out-of-the-box products like Hadoop. The implementation was tested on multiple
processes spawned on a single machine.

So far, BayesWipe-Offline has been implemented as a two-phase, single threaded
program. In the first phase, the program learns the Bayes network (both structure
and parameters), learns the error statistics, and creates the candidate index. Recall
from section 4.3 that we create an index on the attributes of the sample database
to speed up the creation of the candidate set of clean tuples; which we refer to as the
candidate index. The candidate index is constructed on a set of j+1 attributes when the
restriction on a candidate clean tuple is to differ from the dirty tuple in not more than j
attributes. The attributes in the dirty tuple are compared to the attributes of the tuples
in the sample database using the candidate index to generate the set of candidate
clean tuples. Note that this candidate index can be constructed on any arbitrary set of
j+1 attributes present in the sample database. In the second phase, the program goes
through every tuple in the input database, picks a set of candidate tuples, and then
evaluates the P (T ∗|T )P (T ∗) for every candidate tuple, and replaces T with the T ∗ that
maximises that value. Since the learning is typically done on a sample of the data, it
is more important to focus on the second phase for the parallelizing efforts. Later, we
will see how the learning of the error statistics can also be parallelized.
7.1. Simple Approach
The simplest approach to parallelizing BayesWipe is to run the first phase (the learn-
ing phase) on a single machine. Then, a copy of the bayes network (structure and
CPTs), the error statistics, and the candidate index can be sent to a number of other
machines. Each of those machines also receives a fraction of the input data from the
dirty database. With the help of the generative model and the input data, it can clean
the tuples, and then create the output.

If we express this in Map-Reduce terminology, we will have a pre-processing step
where we create the generative and error models. The Map-Reduce architecture will
have only mappers, and no reducers. The result of the mapping will be the tuple 〈T, T ∗〉.

The problem with this approach is that in a truly big data scenario, the candidate
index can become very large. Indeed, as the number of tuples increases, the size of the
domain of each attribute also increases (see Figure 8(a) for 1 shard). Further, the num-
ber of different combinations, and the number of erroneous values for each attribute
also increase (Figure 8(b)). All of this results in a rather large candidate index. Trans-

ACM Journal of Data and Information quality, Vol. V, No. N, Article XXXX, Publication date: September 2016.



XXXX:20 S. De et al.

mitting and using the entire index on each mapper node is wasteful of both network,
memory, (and if swapped out, disk resources). Note that to create a rich and useful data
correction system, we have to accommodate a large candidate clean-tuple set, C(T ), for
every T . C(T ) roughly tracks the sample database size. If we are unable to shard C(T ),
then sharding the input data is pointless. In the following section we endeavor to show
a strategy where not just the input, but also the index on the candidate set C(T ) can
be sharded across machines.

7.2. Improved Approach
In order to split both the input tuples and the candidate index, we use a two-stage
approach. In the first stage, we run a map-reduce that splits the problem into multiple
shards, each shard having a small fraction of the candidate index. The second stage is
a simple map-reduce that picks the best output from stage 1 for each input tuple.

Stage 1: Given an input tuple T and a set of candidate tuples, the T ∗s, suppose the
candidate index is created on k attributes, A1...Ak. We can say that for every tuple T ,
and one of its candidate tuples T ∗, they will have at least one matching attribute ai
from this set. We can use this common element ai to predict which shards the candidate
T ∗s might be available in. We therefore, send the tuple T to each shard that matches
the hash of the value ai.

In the map-reduce architecture, it is possible to define a ‘partition’ function. Given a
mapped key-value pair, this function determines which reducer nodes will process the
data. We can use an exact equivalence on each value that the matching attribute can
take, ai as the partition function. However, notice that the number of possible values
that A1...Ak can take is rather large. If we naı̈vely use ai as the partition function,
we will have to create those many reducer nodes. Therefore, more generally, we hash
this value into a fixed number of reducer nodes, using a deterministic hash function.
This will then find all candidate tuples that are eligible for this tuple, compute the
similarity, and output it.

Example: Suppose we have tuple T1 that has values (a1, a2, a3, a4, a5). Suppose our
candidate index is created on attributes A1, A2, A4. This means that any candidates T ∗
that are eligible for this tuple have to match one of the values a1, a2 or a4. Then the
mapper will create the pairs (a1, T ), (a2, T ) and (a4, T ), and send to the reducers. The
partition function is the hash of the key – so in this case, the first one will be sent to
the reducer number hash(A1 = a1), the second will be sent to the reducer numbered
hash(A2 = a2), and so on.

In the reducer, the similarity computation and computation of the prior probabilities
from the BayesWipe algorithm are run. Since each reducer only has a fraction of the
candidate index (the part that matches A1 = a1, for instance), it can hold it in memory
and computation is quite fast. Each reducer produces a pair (T1, (T

∗
1n, score)). Since

there are several candidate clean tuples, n is used to identify a specific tuple among
those alternatives.

Stage 2: This stage is a simple max calculation. The mapper does nothing, it simply
passes on the key-value pair (T1, (T

∗
1n, score)) that was generated in the previous Map-

Reduce job. Notice that the key of this pair is the original, dirty tuple T1. The Map-
Reduce architecture thus automatically groups together all the possible clean versions
of T1 along with their scores. The reducer picks the best T* based on the score (using a
simple max function), and outputs it to the database.

7.3. Results of This Strategy
In Figure 8(a) and Figure 8(b) we can see how this map reduce strategy helps in re-
ducing the memory footprint of the reducer. First, we plot the size of the index that
needs to be held in each node as the number of tuples in the input increases. The top-
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Fig. 5. Stage-1 Map-Reduce Framework for BayesWipe.

most curve shows the size of index in bytes if there was no sharding – as expected, it
increases sharply. The other curves show how the size of the index in the one of the
nodes varies for the same dataset sizes. From the graph, it can be seen that as the
number of tuples increases, the size of the index grows at a lower rate when the num-
ber of shards is increased. This shows that increasing the number of reduce nodes is a
credible strategy for distributing the burden of the index.

In the second figure (Figure 8(b)), we see how the size of the index varies with the
percentage of noise in the dataset. As expected, when the noise increases, the number
of possible candidate tuples increase (since there are more variations of each attribute
value in the pool). Without sharding, we see that the size of the dataset increases.
While the increase in the size of the index is not as sharp as the increase due to the
size of the dataset, it is still significant. Once again, we observe that as the number of
shards is increased, the size of the index in the shard reduces to a much more man-
ageable value.

Note that a slight downside to this architecture is that a shuffle/reduce of
(T, (T ∗n , score)) is needed in the second stage, and this intermediate data structure
can be quite large. While this leads to some network and temporary storage overhead,
the primary objective of sharding the expensive computation has been achieved by this
architecture.

8. EMPIRICAL EVALUATION
We quantitatively study the performance of BayesWipe in both its modes — offline,
and online, and compare it against state-of-the-art CFD approaches.

We present experiments on evaluating the approach in terms of the effectiveness
of data cleaning, efficiency and precision of query rewriting. All the experiments were
run on a Dell Optiplex machine with a 64-bit Windows 7 Operating System and 4GB of
RAM. The software used was C#, Microsoft .NET framework 3.5, Visual Studio 2013,
Banjo [Hartemink. 2005] and Infer.NET [Minka et al. 2010]. A demo for the offline
cleaning mode of BayesWipe can be downloaded from http://bayeswipe.sushovan.de/.

8.1. Datasets
To perform the experiments, we obtained the real data from the web. The first dataset
is Used car sales dataset Dcar crawled from Google Base of approximately 30k tuples
with 8 attributes. Such “dirty” dataset is referred to as “D′car”. The second dataset
we used was adapted from the Census Income dataset Dcensus from the UCI machine
learning repository [Asuncion and Newman 2007]. From the fourteen available at-
tributes, we picked the attributes that were categorical in nature, resulting in the
following 8 attributes: working-class, education, marital status, occupation, race, gender,
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filing status. country. The same setup was used for both datasets – including parameters
and error features.

These datasets were observed to be mostly clean. We then introduced5 three types
of noise to the attributes. To add noise to an attribute, we randomly changed it either
to a new value which is close in terms of string edit distance (distance between 1 and
4, simulating spelling errors) or to a new value which was from the same attribute
(simulating replacement errors) or just delete it (simulating deletion errors). As we
have mentioned before, one of the assumptions of this paper is that the error model
is a combination of these three kinds of errors, and that the errors are independent of
each other. By synthetically generating these errors, we were able to test our system
against a dataset that satisfies the assumption.

The next dataset tests our system against a real-world scenario where we do not
control the error process, and thus validates that our error model is not unrealistic.

To test our system against real-world noise where we do not have any control over
amount, type or behavior of the noise generation process, we crawled car inventory
data from the website ‘cars.com’, obtaining 1.2 million tuples with 15 attributes. We
manually verified that the data obtained did, in fact, have a reasonable number of
inaccuracies, making it a suitable candidate for testing our system.
Broad applicability to various datasets: We rely on a Bayes Network to learn
the dependencies in the data, which means we inherit the strengths and weaknesses
of the structure and parameter learning tools. Both the packages we used for learning
the Bayes Network: Banjo and Infer.NET learned reasonable structures for the various
datasets we used using default settings. Notice that the Bayes Network learned from
these datasets was shown earlier in Figure 2. Intuitively we see that learned structure
is correct.

Additionally, the only change we made to the datasets obtained directly from the
source was to introduce noise.
8.2. Experiments

Offline Cleaning Evaluation: The first set of evaluations shows the effectiveness
of the offline cleaning mode on a single relational table containing 20,000 tuples in
total out of which there are close to 8,000 dirty tuples. In Figure 6(a), we compare
BayesWipe against CFDs [Chiang and Miller 2008].

The dotted line that shows the number of CFDs learned from the noisy data quickly
falls to zero, which is not surprising: CFDs learning was designed with a clean training
dataset in mind. Even if there is a single dirty tuple in the data sample violating the
pattern learnt, the CFD cannot hold. Further, the only constraints learned by this
algorithm from the dirty sample are the ones that have not been violated in the entire
dataset — unless a tuple violates some CFD, it cannot be cleaned. As a result, the CFD
method cleans exactly zero tuples independent of the noise percentage. On the other
hand, BayesWipe is able to clean between 20% to 40% of the incorrect values. This is
because it not only learns attribute correlations from the majority of the data sample,
but it also implicitly weights the data source tuples with their prior probabilities. This
is combined with the error likelihood (their distance from the observed dirty tuples). It
is interesting to note that the percentage of tuples cleaned increases initially and then
slowly decreases, because for very low values of noise, there are not enough errors for
the system to learn a reliable error model from; and at larger values of noise, the data
source model learned from the noisy data is of poorer quality.

While Figure 6(a) showed only percentages, in Figure 6(b) we report the actual num-
ber of tuples cleaned in the dataset along with the percentage cleaned. This curve

5We note that the introduction of synthetic errors into clean data for experimental evaluation purposes is
common practice in data cleaning research [Cong et al. 2007; Bohannon et al. 2007].
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Fig. 6. Offline cleaning mode of BayesWipe

shows that the raw number of tuples cleaned always increases with higher input noise
percentages.
Setting γ: As explained in Section 5.1, the weight given to the edit distance (δ) com-
pared to the weight given to the distributional similarity (1−δ); and the overcorrection
parameter (γ) are parameters that can be tuned, and should be set based on which kind
of error is more likely to occur. In our experiments, we performed a grid search to de-
termine the best values of δ and γ to use. In Figure 6(c), we show a portion of the grid
search by varying γ and keeping δ = 2/5 fixed.

The “values corrected” data points in the graph correspond to the number of erro-
neous attribute values that the algorithm successfully corrected (when checked against
the ground truth). The “false positives” are the number of legitimate values that the al-
gorithm changes to an erroneous value. When cleaning the data, our algorithm chooses
a candidate tuple based on both the prior of the candidate as well as the likelihood of
the correction given the evidence. Low values of γ give a higher weight to the prior
than the likelihood, allowing tuples to be changed more easily to candidates with high
prior. The “overall gain” in the number of clean values is calculated as the difference
of clean values between the output and input of the algorithm.

Given ground truth in the form of training data, this grid search can be done very
effectively, but under the absence of ground truth, BayesWipe can still be used to a good
approximation using simply an estimate of the noise percentage in the data. Instead
of maximizing the cleanliness gain using a grid search, we attempt to match the total
number of tuples modified by the algorithm as closely as possible to this estimated
noise percentage. It yields a good first approximation for the value of the parameters.
This can be further tweaked later when more information is available about the result
quality.

If we set the parameter values too low, we will correct most wrong tuples in the input
dataset, but we will also ‘overcorrect’ a larger number of tuples. If the parameters
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are set too high, then the system will not correct many errors — but the number of
‘overcorrections’ will also be lower. Based on these experiments, we picked a parameter
value of δ = 0.638, γ = 5.8 and kept it constant throughout.
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Fig. 7. Results of probabilistic method.

Using probabilistic databases: We empirically evaluate the PDB-mode of Bayes-
Wipe in Figure 7. In the first figure, we show the performance of the PDB mode of
BayesWipe, BayesWipePDB, against the deterministic mode, BayesWipeDET, for spe-
cific queries. As we can see from the first, third and seventh queries (marked with
an asterisk in the figure), the BayesWipe-PDB improves the recall without any loss of
precision. However, in most cases (and on average), BayesWipe-PDB provides a better
recall at the cost of some precision.

The second figure shows the performance of BayesWipe-PDB as the probability
threshold for inclusion of a tuple in the resultset is varied. As expected, with low val-
ues of the threshold, the system allows most tuples into the resultset, thus showing
high recall and low precision. As the threshold increased, the precision increases, but
the recall falls.

In Figure 7(c), we compare the precision of the PDB mode using top-k determiniza-
tion against the deterministic mode of BayesWipe. As expected, both the modes show
high precision for low values of k, indicating that the initial results are clean and rel-
evant to the user. For higher values of k, the PDB precision falls off, indicating that
PDB methods are more useful for scenarios where high recall is important without
sacrificing too much precision.
Online Query Processing: While in the offline mode, we had the luxury of changing
the tuples in the database itself, in online query processing, we use query rewriting
to obtain a resultset that is similar to the offline results, without modification to the
database. We consider an SQL select query system as our baseline (see Section 3 for
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an example). We evaluate the precision and recall of our method against the ground
truth and compare it with the baseline, using randomly generated queries.
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We issued randomly generated queries to both BayesWipe and the baseline system.
Figure 9(a) shows the average precision over 10 queries at various recall values. It
shows that our system outperforms the SQL select query system in top-k precision,
especially since our system considers the relevance of the results when ranking them.
On the other hand, the SQL search approach is oblivious to ranking and returns all tu-
ples that satisfy the user query. Thus it may return irrelevant tuples early on, leading
to less precision.

Figure 9(b) shows the improvement in the absolute numbers of tuples returned by
the BayesWipe system. The graph shows the number of true positive tuples returned
(tuples that match the query results from the ground truth) minus the number of
false positives (tuples that are returned but do not appear in the ground truth result
set). We also plot the number of true positive results from the ground truth, which
is the theoretical maximum that any algorithm can achieve. The graph shows that
the BayesWipe system outperforms the SQL query system at nearly every level of
noise. Further, the graph also illustrates that — compared to an SQL query baseline
— BayesWipe closes the gap to the maximum possible number of tuples to a large
extent. In addition to showing the performance of BayesWipe against the SQL query
baseline, we also show the performance of BayesWipe without the query relaxation
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part (called BW-exp6). We can see that the full BayesWipe system outperforms the
BW-exp system significantly, showing that query relaxation plays an important role in
bringing relevant tuples to the resultset, especially for higher values of noise.

This shows that our proposed query ranking strategy indeed captures the expected
relevance of the to-be-retrieved tuples, and the query rewriting module is able to gen-
erate the highly ranked queries.
Efficiency: In Figure 10 we show the data cleaning time taken by the system in its
various modes. The first two graphs show the offline mode, and the second two show
the online mode. As can be seen from the graphs, BayesWipe performs reasonably well
both in the datasets of large size and the datasets with large noise.

The time required to clean the database increases with increased noise percentage
of the tuples. When the percentage of noise increases, we are more likely to see new
unique values in each attribute. This is because naturally occurring noise is random,
resulting in values that don’t occur elsewhere in the database. This increases the space
over which the algorithms have to search. In the offline algorithm, the increase is
contributed to by both the learning phase and the cleaning phase; in the learning
phase there is a larger space of possible values to learn from, and in the cleaning phase
there is a much larger candidate set of values to evaluate. For the online algorithm,
the increase is present, but less pronounced because new values observed during the
online cleaning phase are not considered as candidates for other input tuples.
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Fig. 10. Performance evaluations

Evaluation on real data with naturally occurring errors: In this section we used
a dataset of 1.2 Million tuples crawled from the cars.com website7 to check the perfor-

6BW-exp stands for BayesWipe-expanded, since the only query rewriting operation done is query expansion.
7http://www.cars.com
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mance of the system with real-world data, where the corruptions were not syntheti-
cally introduced. Since this data is large, and the noise is completely naturally occur-
ring, we do not have ground truth for this data. To evaluate this system, we conducted
an experiment on Amazon Mechanical Turk. First, we ran the offline mode of Bayes-
Wipe on the entire database. We then picked only those tuples that were changed dur-
ing the cleaning, and then created an interface in mechanical turk where only those
tuples were shown to the user in random order. Due to resource constraints, the ex-
periment was run with the first 200 tuples that the system found to be unclean. We
inserted 3 known answers into the questionnaire, and removed any responses that
failed to annotate at least 2 out of the 3 answers correctly.

Table IV. Results of the Mechanical Turk Experiment, showing the percentage of
tuples for which the users picked the results obtained by BayesWipe as against the
original tuple. Also shows performance against a random modification.

Confidence BayesWipe Original Random Increase over Random
High confi-
dence only 56.3% 43.6% 5.5% 50.8% points (10x bet-

ter)
All con-
fidence
values

53.3% 46.7% 12.4% 40.9% points (4x better)

 ... make model cartype fueltype engine transmission drivetrain doors wheelbase 

Car: mazda 
cx-9 
touring 

suv gasoline 
3.5l v6 24v 
mpfi dohc 

6-speed 
automatic 

fwd 4 113” 

Car: mazda 
cx-9 
touring 

suv gasoline 
3.7l v6 24v 
mpfi dohc 

6-speed 
automatic 

fwd 4 113" 

 

 First is correct 

 Second is correct 

How confident are you about your selection? 

 Very confident     Confident    Slightly confident    Slightly Unsure    Totally Unsure 

Fig. 11. A fragment of the questionnaire provided to the Mechanical Turk workers.

An example is shown in Figure 11. The turker is presented with two cars, and she
does not know which of the cars was originally present in the dirty dataset, and which
one was produced by BayesWipe. The turker will use her own domain knowledge, or
perform a web search and discover that a Mazda CX-9 touring is only available in a
3.7l engine, not a 3.5l. Then the turker will be able to declare the second tuple as the
correct option with high confidence.

The results of this experiment are shown in Table IV. As we can see, the users
consistently picked the tuples cleaned by BayesWipe more favorably compared to the
original dirty tuples, proving that it is indeed effective in real-world datasets. Notice
that it is not trivial to obtain a 56% rate of success in these experiments. Finding a
tuple which convinces the turkers that it is better than the original requires search-
ing through a huge space of possible corrections. An algorithm that picks a possible
correction randomly from this space is likely to get a near 0% accuracy.

The first row of Table IV shows the fraction of tuples for which the turkers picked
the version cleaned by BayesWipe and indicated that they were either ‘very confident’
or ‘confident’. The second row shows the fraction of tuples for all turker confidence
values, and therefore is a less reliable indicator of success.
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In order to show the efficacy of BayesWipe we also performed an experiment in which
the same tuples (the ones that BayesWipe had changed) were modified by a random
perturbation. The random perturbation was done by the same error process as de-
scribed before (typo, deletion, substitution with equal probability). Then these tuples
(the original tuple from the database and the perturbed tuple) were presented as two
choices to the turkers. The preference by the turkers for the randomly perturbed tu-
ple over the original dirty tuple is shown in the third column, ‘Random’. It is obvious
from this that the turkers overwhelmingly do not favor the random perturbed tuples.
This demonstrates two things. First, it shows the fact that BayesWipe was performing
useful cleaning of the tuples. In fact, BayesWipe shows a tenfold improvement over
the random perturbation model, as judged by human turkers. This shows that in the
large space of possible modifications of a wrong tuple, BayesWipe picks the correct one
most of the time. Second, it provides additional support for the fact that the turkers
are picking the tuple carefully, and are not randomly submitting their responses.

In this experiment, we also found the average fraction of known answers that the
turkers gave wrong answers to. This value was 8%. This leads to the conclusion that
the difference between the turker’s preference of BayesWipe over both the original
tuples (which is 12%) and the random perturbation (which is 50%) are both significant.

9. CONCLUSION
In this paper we presented a novel system, BayesWipe that works using end-to-end
probabilistic semantics, and without access to clean master data. We showed how to
effectively learn the data source model as a Bayes network, and how to model the
error as a mixture of error features. We showed the operation of this system in two
modalities: (1) offline data cleaning, an in situ rectification of data and (2) online query
processing mode, a highly efficient way to obtain clean query results over inconsis-
tent data. There is an option to generate a standard, deterministic database as the
output, as well as a probabilistic database, where all the alternatives are preserved
for further processing. We empirically showed that BayesWipe outperformed existing
baseline techniques in quality of results, and was highly efficient. We also showed the
performance of the BayesWipe system at various stages of the query rewriting opera-
tion. We demonstrated how BayesWipe can be run on the map-reduce architecture so
that it can scale to huge data sizes. User experiments showed that the system is useful
in cleaning real-world noisy data.
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