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Abstract. Rule discovery is a challenging but inevitable process in sev-
eral data centric applications. The main challenges arise from the huge
search space that needs to be explored, and from the noise in the data,
which makes the mining results hardly useful. While existing state-of-
the-art systems pose the users at the beginning and the end of the min-
ing process, we argue that this paradigm must be revised and new rule
mining algorithms should be developed to let the domain experts in-
teract during the discovery process. We discuss how new systems that
embrace this approach overcome current limitations and ultimately re-
sult in shorter time and smaller user effort for rule discovery.

1 Introduction

Rule discovery from data is of utmost importance given the applicability of
rules in several real world data-centric applications such as cleaning [13, 25, 32],
fraud detection [4, 5], cybersecurity [22, 28], smart cities [15, 20], and database
design [19, 21, 34]. While for many of these applications machine learning (ML)
approaches have been designed, rules are still extremely popular in the indus-
try [32]. In fact, rules are a favored choice to encode the background knowledge
of the domain experts and ultimately take decisions over data. For example,
financial services corporations manually create corpora of thousands of rules to
identify fraudulent credit card transactions [24]. The main advantages of rule
based approaches include the ability to work without training data, the possibil-
ity to debug them by non-experts, the potential to handle specialized infrequent
patterns, and the semantically explainable and interpretable output [32].

In this work we focus on rules for data quality. We are interested in rules
that go beyond traditional association rules [3], both in terms of complexity of
the rule language and in terms of supported data models. Consider a scenario
with credit card transactions by a customer, as shown in Figure 1. A domain
expert states that if there are two transactions from the same card and the same
merchant, the transaction IDs must be consistent with the timestamps, or the
transactions should be manually reviewed. In other words, if a transaction has
a higher id than another one that is registered later, there must be a problem.

In this example, the rule is triggered because record T2 for transaction with
ID “XX216” is registered before transaction “XX214” in T1. The rule can be
formally stated by using the formalization of Denial Constraints (DCs) [10] as



@Tα, Tβ P R, pTα.Merchant “ Tβ .Merchant^ Tα.CreditCard “
Tβ .CreditCard^Tα.T ransID ą Tβ .T ransID^Tα.T ime ă Tβ .T imeq

where the universal variable Tα and Tβ over the records are used to define
predicates that, if true at the same time, trigger the rule.

TransID ItemId Merchant CreditCard Time
T1 XX214 17683 PayPal XXX7038 10:35:02
T2 XX216 43266 PayPal XXX7038 10:34:43

Fig. 1. Credit card transactions.

However, discovering rules is a difficult exercise. Current approaches for rule
discovery treat the algorithm as a black box, where the users are only engaged in
the definition of the input parameters, such as the minimum support to consider
a rule valid, and in the evaluation of the ultimate output. Unfortunately, these
design choices make such approaches hard to use in real-world scenarios for three
main reasons.

1. In the input definition step, several parameters strongly impact the final
output, but are very hard to set upfront. Examples of such parameters in-
clude the percentage of tolerance to noise to discover approximate rules, or
the way to select constants to be considered for rule discovery. These pa-
rameters are rarely known apriori, but tuning them with a trial-and-error
approach is infeasible, given the large number of possible value combinations
and the long running execution times for the mining, as discussed next.

2. Complexity in the mining of the rules comes from both the size of the schema
and the size of the data. The schema complexity is exponential in the num-
ber of attributes, as all combinations of attributes must be tested [10]. For
example, for the transactions example presented in Figure 1, the rule may
also need to involve attribute ItemId. Moreover, if the language supports
complex pairwise rules, such as denial constraints or de-duplication rules,
the complexity is quadratic over the number of tuples.

3. In the output consumption, the number of rules that hold over the data is
usually large, especially when constants and approximate rules are allowed,
as they are often needed in practice. Moreover, when tolerance to noise in
the data is required, semantically valid rules are mixed with incorrect rules
because of dirty values in the data. This problem is alleviated by pruning
mechanisms and ranking, but ultimately it leads to a large amount of time
spent by the domain experts to identify the valid rules among the thousands
that hold on the data.

In addition to these shortcomings, we should consider the limits in terms
of the expressive power in the existing solutions. Popular rules expressed with
ETL or procedural languages employ User Defined Functions (UDFs) to specify



special comparisons among values or complex look up functions. These spe-
cialized functions lead to more powerful rules, but the discovery of the right
function is hard, as it is domain and dataset specific. Consider Temporal Func-
tional Dependencies (TFDs), which are FDs that hold only during a certain
time period, e.g., “the same person cannot be in two different places at the same
time” [1,31]. Discovering the appropriate functions (the absolute time difference
between timestamps) from a given library of UDFs [30,33] and the correct tem-
poral values (the correct “same time” duration) is hard. These hard discovery
cases lead to new input parameters, longer execution times, and larger number
of output rules, thus exacerbating the three problems listed above.

We believe that the most promising way to overcome the limits of traditional
approaches is to rethink discovering algorithms to make them user-aware. This
change of perspective should cover all the aspects mentioned above: a more
natural input for the users, incremental efficient algorithms to enable interactive
response time, and a simpler and more effective way to identify the useful rules.
As an orthogonal dimension, the new systems should also embrace a language
that can use libraries of user-defined functions, in order to discover more powerful
rules. In order to prune the huge unwanted search space while retaining high
expressive power, we can use human support in the search algorithm as early as
possible, so that it can steer the search in the right direction.

In the following, we first describe the main challenges in creating such new
systems (Section 2), and we then discuss new approaches that we believe are
heading in the correct direction (Section 3).

2 Why Rule Discovery is Hard

In this Section, we first introduce formally a class of rules that will be used
in the examples, and briefly give intuitions about other relevant classes. We
then discuss rule discovery algorithms in general. Finally, we give the five main
challenges in rule discovery.

2.1 Denial Constraints

Consider the example in Figure 2 with items from a chain of grocery stores in
three states, “AZ”, “CA” and “WA”. Assume that only “Shoes” from the store in
state “AZ” and “EarPhones” from the store in “WA” are labeled as “General”;
in any other state both items can only be listed under the type “FootWear”
and “Electronics”, respectively. The highlighted value for the Type indicates an
error in tuple r3, as the entry “EarPhones” has been labeled “General” instead
of “Electronics” in “AZ”.

For a relation R, we use a notation for DCs of the form
ϕ : @tα, tβ , tγ , . . . P R, pP1 ^ . . .^ Pmq
where Pi is of the form v1φv2 or v1φc with v1, v2 P tx.A, x P tα, β, γ, . . .u, A P

R, φ P t“,ă,ą,‰,ď,ěu, and c is a constant.



ItemID Location Title Description Type
r1 17683 AZ Levis Shoes General
r2 34987 CA AllStar Shoes FootWear
r3 14325 AZ Samsung EarPhones General
r4 82971 WA Nokia EarPhones General
r5 9286 CA Toshiba EarPhones Electronics

Fig. 2. Items in a chain of grocery stores.

Assume that a mining algorithm comes up with several approximate rules
for the relation in Figure 2. We use attribute abbreviations for readability.

R1 : @Tα P R, pTα.Desc. “ “EarPhones”^ Tα.T ype ‰ “Electronics”q
R2 : @Tα P R, pTα.Loc. “ “AZ”^ Tα.Desc. “ “EarPhones”^

Tα.T ype ‰ “Electronics”q
R3 : @Tα P R, pTα.Desc. “ “Shoes”^ Tα.T ype ‰ “General”q
R4 : @Tα P R, pTα.Loc. “ “AZ”^ Tα.Desc. “ “Shoes”^

Tα.T ype ‰ “General”q
R5 : @Tα, Tβ P R, pTα.Desc. “ Tβ .Desc.^ Tα.T ype ‰ Tβ .T ypeq
R6 : @Tα, Tβ P R, pTα.Loc. “ Tβ .Loc.^ Tα.Desc. “ Tβ .Desc^

Tα.T ype ‰ Tβ .T ypeq

Only some of the approximate rules that have been automatically discovered
are correct. Rule R1 states that all “EarPhones” should be binned into the type
“Electronics”, and identifies tuple r4 as a violation while is not the case. Hence,
R1 is an incorrect rule. Rule R2 is correct and identifies the error in r3. However,
it only enforces our domain knowledge for “EarPhones” and not for “Shoes”.
Since “Shoes” in “AZ” can be misclassified to any other type than “General”,
we need an additional rule, such as R4, to detect all errors. Rule R3 is correct for
items sold in state “AZ”, but would identify correct values as errors in the other
states. Rule R5 represents a functional dependency stating that the Description
determines the Type and it is incorrect, since tuples r4 and r5 are erroneously
identified as errors. Rule R6 states that Location and Description determine the
Type. This rule is correct and more general than the union of R2 and R4 as it
does not depend on constants. In fact, it can enforce all the domain constraints
on future tuples not restricted to just “Shoes” or “EarPhones”.

2.2 Other Rule Types

Denial Constraints can express several common formalisms, such as Functional
Dependencies [21,34] and Conditional Functional Dependencies [8,13]. They can
express single tuple level rules (R1–R4) and table level rules, i.e., rules involving
two or more tuples in the premise (R5,R6). Also they allow the use of variables
and constants, and join across different relations. However, rule types are not
limited to what we presented above. There are several other data quality rule
types that are common in practice.



Regular-expression based rules specify constraints on textual patterns in a
tuple [18] and lead to data transformations such as substring extraction, delim-
iter identification, and the specification of filters. For instance, a rule may state
that only 5-digit numbers in the ItemID attribute of a tuple are allowed.

A very important problem where rules have proven their effectiveness is En-
tity Resolution [25,33]. The goal here is to perform de-duplication, i.e., to identify
pairs and group of records that refer to the same real-world entity. An exemplary
rule for the item data in Figure 2 may state that two items should be merged if
they have very similar ItemID and the same Location and Title.

Another example of rule types are inference rules, which suggest when two
entities respect a particular relationship in a Knowledge Base [16]. These rules
help infer and add missing knowledge to the KB. An inference rule can state that
two persons sharing a child are married, therefore a new fact can be inferred in
the KB. Inference rules are different from association rules [3], which do not
derive new facts, but are popular in relational databases to discover interesting
relations between variables, e.g., “If a client bought tomatoes and hamburgers,
then she is likely to also buy buns”.

Finally, lookup rules use an external reliable source of information which can
be exploited up to identify errors in the database. The external source can either
be a Knowledge Base (KB) [11] or a table of master data [14]. The discovery
process tries to map the columns in the relation of interest to the external,
reliable source. The resulting rule can then be used to verify if the relation
conforms to the external source. For example, in Figure 2, a rule would map the
attributes Title and Type in the relation to two columns occurring in a master
table, or to a hasTypepTitle, Typeq relationship in a KB. Every erroneous entry
for Type, such as “Vegetables” for the Title “Levis”, is identified as an error
because it violates the mapping stated in the rule. A lookup rule for the example
in Figure 2 and a master table M can be expressed in a DC as follows.

R7 : @Tα P R, Tβ PM pTα.T itle “ Tβ .ItemTitle^ Tα.T ype ‰ Tβ .Classq

The rule states that if the Title of a tuple in the relation is equal to an ItemTitle
value in the master data, then the value in the relation for Type should match
the corresponding value specified by Class in the master data, otherwise there
must be an error in the relation.

2.3 Discovering Rules

All the different kinds of rules share challenges in their discovery process. We
first give an intuition of how these mining algorithms work in general, and we
then discuss their challenges in real-world applications. We divide the algorithms
into two main categories.

Lattice traversal algorithms. The search space for rule discovery can be
seen as a power set lattice of all attribute combinations. Several algorithms try
to come up with the right way to traverse such a lattice. Different approaches
have been tested, such as level-wise bottom-up traversal strategy and depth-first



random walk. The commonality in these approaches is that they generate new
rule candidates sequentially and immediately validate them individually (i.e.,
with a query over the data). The strategy to deal with the large search space
is to prune it incrementally by inferring the validity of candidates that have
not been checked yet. This test can be done exploiting the static analysis of
the already discovered rules by using the minimality criterion, language axioms
(e.g., augmentation and transitivity), and logical implication [17,19,21].

Difference- and agree-set algorithms. These algorithms model the search
space in an alternative way by using difference and agree-sets. For pair-wise rules,
the idea is to search for sets of attributes that agree on the values in the cross
product of all tuples. Due to this change in the modelling, they do not try to
successively check rules and aggressively prune the lattice search space. On the
other hand, they look for attribute sets that agree on certain operators over the
tuple values, since those can be in a dependency with other sets of attributes
that also agree on some operator. Once obtained the agree-sets, the algorithms
try derive the valid rules from them, either level-wise or by transforming them
into a search tree that can traversed depth-first [10,34].

Rule discovery algorithms are then commonly extended in two directions.
First, in the discovery problem a rule is considered correct if there are no

violations when applied over the data. However, in real-world scenarios, there
are two main reasons to relax this requirement:

Overfitting. Data is dynamic and as more data becomes available, overfitting
constraints on current data set can be problematic.

Errors. The common assumption is that errors constitute small percentage of
data, thus discovering rules that hold for most of the dataset is a common
approach to overcome this issue.

What is usually done is to modify the discovery statement into an approxi-
mate rule discovery problem. The goal is still to find valid rules, but now a rule
is considered of interest if the percentage of violations (i.e., tuples not satisfying
the rules) is below a given threshold. For this new problem, the original mining
algorithm is revised to take this extension into account.

A second important and common aspect is the extension of the search space
to also handle constants. The reason is that a given rule may not hold on the
entire dataset, thus conditional rules are useful. Adding a new predicate with a
constant is a straightforward operation, but the number of constant predicates
is linear w.r.t. the number of constants in the active domain, which is usually
very large. The common approach here is to focus on discovering rules for the
frequent constants in the dataset [12,13].

As for the approximate version, the problem is revised to discover rules that
involve constants with a frequency in the dataset above a given threshold. A
common solution is to follow the “Apriori” approach to discover the frequent
constants and then include only these constants in the predicates in the search
space [10].



2.4 Challenges

We now use the example in Figure 2 to illustrate the five main issues in rule
discovery.

Scalability. Discovering rules is an expensive process. Consider rule discov-
ery systems for Knowledge Bases [16]. A KB consists of ăsubject, relationship,
objectą triples such that a relationship holds over the ăsubject, objectą pair.
Since KBs do not have a generic schema presented upfront, the discovery of a
rule is done by the enumeration of all the instances of ăsubject, objectą pairs
conforming to any of the relationships in the KB. In order to efficiently measure
the support for the rules while discovering them, the entire KB is loaded into
the main memory. Also, literals (constants) are removed from KB to make it fit
the memory. Even with such extensive pre-pruning, these systems suffer from
memory concerns and are hence constrained to mine rules with at most 3 atoms.

Traditional database rule mining methods suffer from similar limitations [8,
13, 21, 26, 34]. Since any subset of attributes can be part of a rule, there is
an exponential number of rules to be tested w.r.t. the number of attributes
in the input relation [10, 19]. Also, rules that look over pairs of tuples with
operators different from the equality, such as similarity comparisons for entity
resolution [25, 30] or not equal operators in DCs, have a quadratic complexity
over the number of tuples in the dataset. Main memory algorithms can address
this issue, but have obvious constraints on the maximum amount of data that
can be handled.

Sampling seems a natural candidate to alleviate the memory concerns when
generating rules. However, picking a representative sample that captures the
subtleties of all the existing patterns in the data is not feasible. The main reason
is the necessity to discover rules involving constants. For example, there is only a
single tuple, r1, in Figure 2 for the fact that in “AZ”, “Shoes” can be categorized
as a “General” item. However, even if we sample three tuples r2, r3 and r4 from
the item list, thus with a larger sample size, we would not capture the specified
pattern. The same issue applies with larger and more realistic datasets.

Another dimension in the complexity is the number of predicates that need
to be tested. If we enable the use of a library of UDFs, each with its own con-
figuration, such as a threshold for a similarity function in entity resolution [33],
the search space becomes even larger and less tractable.

Noise. Noise is omnipresent in real datasets, and with percentages that can
reach up to 26% of the data in applications such as data integration [1]. In
addition, data can quickly turn stale. For instance, with concept drift, the com-
position of electronic goods like smartphones changes, thus there is a need of
updating the classified category of their components [32]. In order to handle sig-
nificant percentages of noise, rule discovery algorithms allow approximate rules
that hold on most of the data. This is done by setting a threshold on the amount
of admissible violations for a rule to be still considered valid. Approximate rules



are learnt from the patterns in the data occurring with a percentage of excep-
tions below the threshold. While this seems to be a valid solution, and it is used
in several approaches, there are two important complications.

– Since the amount of errors in data is usually unknown, identifying a suitable
threshold to overcome the noise is a trial-and-error process, where several
thresholds are tried until an appropriate value is identified. In our running
example, we would have to put a 20% threshold to discover R2 (r3 is one
tuple among five).

– Even after setting a threshold, it is not guaranteed that the rules mined out
of the frequent patterns are semantically valid. In fact, large thresholds lead
to rules that are incorrect. For example, if we set the noise threshold to 20%
in Figure 2, a DC discovery algorithm would mine rule R5

@Tα, Tβ P R, pTα.Desc. “ Tβ .Desc.^ Tα.T ype ‰ Tβ .T ypeq
This is because we treat as error the evidence from tuple r1 that in “AZ”,
“Shoes” are allowed to be categorized as “Grocery” items. An appropriate
rule would have been
@Tα, Tβ P R, pTα.Location “ Tβ .Location^ Tα.Description “

Tβ .Description^ Tα.T ype ‰ Tβ .T ypeq
but this is not inferred because the incorrect rule is more general, and for
implication the correct rule is not part of the output.

Large Output. Consider again the example in Figure 2. A possible rule would
state that ItemID equals to “9286” indicates “EarPhones”. If we go beyond com-
parisons based on equalities, we could incorrectly infer that items with a de-
scription of “EarPhones” and ItemID greater than “9286” are classified with
type “General”. Experiments show that temporal FDs are most effective if the
duration constants are discovered at the entity level by defining a rule with dif-
ferent constants for each entity [1]. For instance, Obama travels more often than
an average person, and therefore has a smaller duration in the “same time” ex-
ample discussed above. The same observation motivated Conditional Functional
Dependencies, which extend FDs with constants. It is easy to see that there is
a plethora of rules pivoting on constants, and the good ones are hidden among
the many that do not hold semantically. The traditional way to handle this big
search space is to rely on the most popular constants [1, 10]. These constants
occur in enough tuples to gather the evidence to derive a rule. This support
threshold to mine rules containing only popular constants is a crucial parameter
in the input definition to find the sweet spot between acceptable execution times
and the discovery of useful rules involving constants.

Enabling constants leads to a large number of rules in the output of the min-
ing systems. To facilitate the users, implication tests for pruning and ranking
techniques are popular solutions. However, ranking rules is hard, as useful, cor-
rect rules may have very low support, i.e., since they cover only very few tuples
for rare events, therefore they may end up at the bottom of the ranking. Other
systems resort even to crowdsourcing as a post-processing step to evaluate the
rules [11, 32]. However, the results are commonly in the order of thousands of



rules, thus hard to skim, especially when most of the discovered rules are not
useful because of the issues raised by the approximation that handles the noise.
Ultimately, selecting the correct rules among thousands of results is a daunting
task that requires experts both in the rule language at hand (to understand the
precise semantics of the rule: “what does it mean?”) and in the data domain (to
validate the semantic correctness of the rule: “is it always true?”).

Hard Configuration. As it should be clear from the discussion on the role
of noise and constants, rule discovery algorithms require several non-obvious
parameters to be set. In general, there is no way to know in advance what
is the amount of noise that should be tolerated in the discovery of the rules.
Also, high noise threshold can hide important rules, so there is no one unique
value that suddenly leads to the discovery of all the semantically correct rules.
The same challenge applies for the threshold for the constant values and several
other parameters that are language specific. For example, in algorithms for the
discovery of TFDs the granularity of the time buckets is required (minutes, hours,
or days?) [1], or for inference rules mining, the maximum number of hops to be
traversed in the KB must be set [16].

Since the search space of possible rules is exponential in the number of at-
tributes, some systems even require an initial suggestion of the rule structure
from the user to begin with. For instance, in [33], the user is asked to provide
the DNF specification of the rule grammar for Entity Resolution that specifies
the attributes that need to be considered to classify a pair of tuples as referring
to the same entity or not. In addition to that, in case the rules rely on functions
with accompanying thresholds, it is a difficult task for the user to specify those
values (how similar should two IDs be to be considered a match?).

Need for Heterogeneous Rule Types. Several types of rules are needed
for any application, but there is no a single system that discovers all kinds of
rules [2]. There are primarily two different types of rules - syntactic and semantic.
The error that we see in tuple r3 of Figure 2 can be fixed by a semantic rule, such
as a DC that states that “EarPhones” can be tagged as a “General” item in all
states but “WA” (R2). But a regular expression that restrains the text patterns
in the table in Figure 2 would capture if an entry for Location is expressed as
“Washington”, instead of “WA”. Likewise, if another syntactic rule states that
ItemID can only be a 5-digit number, tuple r5 can be treated as a violation of that
rule because of the 4-digit entry for ItemID. Specific tools such as Trifacta [18]
and OpenRefine [2] discover and enforce syntactic rules as regular expressions
on the textual patterns of the attribute values. The same discussion applies for
lookup rules. There can be data errors that are not captured syntactically nor
by a DC, but require to verify the data with some reference information, such as
in R7 (Section 2.2), but these rules usually require different discovery algorithms
(e.g., [11, 14]).



It is clear that in general more than one rule type needs to be defined for a
given application. But this implies that multiple tools need to be configured and
multiple outputs must be manually verified by the users.

3 Opportunities and Directions

To overcome the challenges in Section 2, we envision a rule discovery system that
puts the users at the center of the mining process. The main idea is that the
human-in-the-loop proactively participates in the discovery by interacting with
the mining algorithms, instead of limiting the interaction to the specification of
parameters and the post-pruning of rules emitted by the black box. Following
are the main directions of research that we recognize in recent work for the new
generation of rule discovery systems.

Continuous Involvement. Given the challenges discussed in the previous sec-
tion, we argue that there is a clear opportunity of having the human expert
involved along with the system in the rule generation process. This means that
the users do not need to set up the parameters upfront, and do not need to eval-
uate long lists of rules at the output. However, the first step to move toward this
vision is to achieve interactive response times in the mining steps. There have
been several efforts to reduce the overall mining time by exploiting distributed
algorithms [7,19]. These solutions exploit parallelization techniques to distribute
the most expensive operations, such as joins, by using native primitives under
the Map-Reduce paradigm. However, we argue that another direction should be
explored to enable a novel, more effective approach to the rule discovery problem.

The solution we envision for this problem is to drop the one-shot algorithms
that discover all the possible rules in a dataset. Instead, we should interleave
the pivotal steps of the rule mining algorithm with user interactions. Of course,
understanding when and how to ask for user feedback is a crucial requirement.
Recent works have started to look at this problem in the context of user up-
dates [17,18]. The systems discover the possible rules underlying a given update
and validate the most promising tentative rules with the users. This early feed-
back is useful to prune large portions of the search space and guide the algorithms
towards the correct rules. Besides that, pivoting on the user for feedback can also
address the issue of noise, even when the examples underlying meaningful rules
have very small support in the table, such as tuple r1 in Figure 2. In this exam-
ple, a single tuple is below the noise threshold and can hence be mistaken for
noise. However such an example can be championed by the data expert is (s)he
thinks that the corresponding rule can contribute to high coverage and recall.

Let us clarify this idea of contribution in the context of data cleaning. For
data cleaning rules, the challenge lies in identifying the rule that maximizes the
number of covered dirty tuples in the database, while minimizing the number
of questions asked to the users. Given a search space of the possible rules, the
algorithms try to quickly identify rules to be presented to the user for validation
that are both as general as possible (to maximize impact) and most likely correct



(to quickly identify valid rules). This is in opposition to the enumeration of
the entire space of traditional algorithms. Results show that with as little as
two questions for a user update, general rules can be discovered [17]. This is
done from a user update, a simple action that does not require setting input
parameters. By validating a small number of “promising” rules with the user
(i.e., rules that find the good compromise between coverage and likelihood of
being correct), the system is not exposing the long list of rules to evaluate at
the end of a time consuming mining. Thus the algorithmic effort in presenting
the right set of questions to the human-in-the-loop coupled with her feedback
tackle the issue of the large output.

For example, consider again Figure 2. If the user updates the incorrect value
“General” to “Electronics”, this would create a search space with Type as the
right hand side of the rule, as this is where the user made the update. Now
the search space is still exponential over the number of attributes, but with the
user validating or refusing a possible rule, the algorithm quickly converges to the
search space area containing the correct rule. Suppose the first rule exposed to
the user is

@Tα P R, pTα.Desc. “ “EarPhones”^ Tα.T ype ‰ “Electronics”q

and the user does not validate it. This is a clear sign that a more specific rule is
needed, if we want to use Description. So another question can be asked for rule

@Tα P R, pTα.Loc. “ “AZ”^Tα.Desc. “ “EarPhones”^Tα.T ype ‰ “Electronics”q

which this time is validated. A rule involving constants is obtained for a dirty
dataset without setting any input parameter.

However, two important limitations hinder the impact of such solutions.
First, the current languages support simple 1-tuple rules, thus not exploiting
more powerful rule languages, such as Denial Constraints over multiple tuples.
Second, these systems are designed to handle one update at a time, or a sequence
of updates with the same semantics. However, given a batch of user updates over
the data, such as historical data for data cleaning, it is rarely the case that all
updates have been made with a single rule in mind. On the contrary, it is likely
that each, or subsets, of the updates have a different underlying rule guiding the
users towards the update. This is a challenging problem for which new algorithms
are needed.

ItemID Location Title Description Type
r1 - AZ Levis.D Shoes General
r1
1 - Arizona L.Denim Shoes FootWear
r2 34987 California AllStar Shoes FootWear
r1
2 - CA Converse.AS Shoes FootWear

Fig. 3. De-duplicating items in a grocery store.



User Defined Functions. As discussed above, more expressive rules are needed
in real world datasets for complex problems, such as de-duplication (a.k.a., entity
resolution) [6,23,30]. For instance, if we treat r1 and r1

1 as a tuple pair in Figure 3,
we may want to be able to assess whether the records in the pair are duplicates
of the same item.

An approach to the de-duplication problem is to feed ML algorithms with
positive and negative examples, and build a model for a classifier. Interestingly,
a set of rules can outperform an ML based approach for this task [30, 33]. In
particular, provided a grammar to shape the form of the rules and a library of
similarity functions (available also to the ML classifier), the appropriate func-
tions and their thresholds can be automatically discovered given sets of positive
and negative pairs. In our example in Figure 3, a DNF grammar can be

simpItemIDq_psimpTitleq^simpTypeqq_psimpTitleq^simpLoc.q^simpDesc.qq

The rules satisfying this grammar state that a tuple pair can be labeled identical
if the tuples are similar w.r.t. ItemID alone (expressed by sim function), or over
Title and Type together, or upon Title, Location, and Description. However, the
ItemID values are often missing from the table in Figure 3, which makes other
DNF clauses in the grammar more useful in this example. Given a library of
similarity functions F1, . . . , Fn and a set of threshold values T1, . . . , Tm, the
computation of similarity function simpattrq in the DNF grammar is done by
checking every Fipr1rattrs, r

1
1rattrsq ą Tj , with i P 1, . . . , n and j P 1, . . . ,m.

The test checks if the outcome of applying the similarity function Fi upon the
attribute attr exceeds one or more threshold values. The system then picks the
appropriate Fi and Tj for all attributes participating in the DNF grammar by
pruning redundant threshold values and similarity functions with greedy and hill
climbing algorithms.

This is a case of the opportunity of using a library of UDFs to discover more
expressive rules, without exposing the internals of the mining to the domain
experts. The system is thus not hard to configure as all the human helper needs
to provide is an easy-to-define input in the form of labeled training data and has
to examine the results matches and mismatches, which can be used to refine the
rules, rather than the output rules themselves. As in the case of the updates,
users only have to deal with examples over the data, thus there is no required
expertise in logic nor in procedural code. However, in cases where the training
sets are too small or not representative, the above approach would fail. It is easy
to see active learning as a tool to help classify ambiguous test data by using
human support. Bootstrapping hard-to-classify test points into the training data
will strengthen the rule mining algorithms. Tuple r1 in Figure 2 is a hard-to-
classify example as it is mistaken for an error by most rule discovery systems.
A human may know that stores in “AZ” should classify “Shoes” as “General”
items, thus she would label this tuple as a candidate into the training data.
However, integrating active learning to the discovery process is not easy because
new mining algorithms should be designed for identifying what are the most
beneficial examples for the internal model. While this has shown potential in



ad-hoc solutions [29], it is not obvious how to make it more general for the
discovery of arbitrary rules beyond entity resolution.

Tool Ensembles. Given the necessity of using a plethora of heterogeneous
rules to fix multiple types of errors, an ensemble of tools performs better than
a single tool. Recent results have shown that combining multiple kinds of rules
is mandatory to obtain high recall in the task at hand, and best results are
obtained when combining rules with statistical methods [2, 27]. For example, a
recent ensemble for error detection in [2] consists of tools for outlier detection
together with both syntactic and semantic rules. The authors here focus on
combining the cleaning suggestions from these tools over the data, as they rely
on manually tuned tools and hand written rules.

However, we know that discovering correct rules is a challenging problem,
and (manually) doing it over dirty data for multiple tools is indeed an expensive
operation. To tackle this problem, we believe that the idea of assembling differ-
ent rules should be lifted to the idea of combining multiple discovery algorithms.
Instead of having the user manually checking rules for each tool supporting a
single language (say, syntactic or semantic), the ensemble over the data enables
a unified approach to the heterogeneity problem. Given multiple algorithms to
discover rules on a given dataset, we can filter the rules emitted by the ensemble
to apply only those that have a mutual consensus about identifying a tuple or an
attribute for the task at hand. This naive approach is similar to majority voting
– if a large fraction of algorithms agree, then they are trustable –but more so-
phisticated techniques can be developed. For example, the majority voting can
be parameterized by using a min-K approach, where K indicates the minimum
number of tools that produce rules that agree over the data. Another approach
resorts to ordering the diverse rules from the ensemble by their estimated preci-
sion, for example computed upon a sampled dataset for which the ground truth
is available. This enables a data expert to validate the outcome emitted by each
tool in the ranked order, while implicitly giving feedback on all the rule discovery
algorithms. In fact, we can label the rules as meaningful or not depending on
the validation of the rule outcome by the expert. This ensures that a manual
validation step can greatly help the rule selection.

4 Conclusion

Discovering rules that are semantically meaningful is important in many appli-
cations, but it is a challenging task. In this paper, we propose to open the black
box of rule discovery systems to the end user by emphasizing the need to employ
early human feedback into the rule mining process. There are techniques that
also aim at opening the blackbox of Machine Learning for Information Extrac-
tion (IE) [9]. However, ML approaches are mostly non-interpretable.

Our vision goes beyond the state-of-the-art rule mining frameworks that
use the human help only to set parameters and to select valid rules from the
discovered ones. We argue that such design decisions fail to effectively help the



users in producing meaningful rules. This goal can be better achieved by enabling
human suggestions during the algorithmic phase of rule discovery.

In this context, we discussed how recent trends in rule discovery systems
show great potential for new research that finally put the user at the center of
the mining process. We advocate for new solutions with the goal of graciously
involving the human in the mining, with very limited input to bootstrap and
immediate interaction to guide the mining towards the right direction. The three
main directions that we advocate are (i) a direct involvement of the user in
the traversal of the search space, (ii) the support for libraries of user defined
functions to discover more expressive rules, and (iii) an ensemble of rule discovery
algorithms to handle the diversity of languages available and steer effectively the
human interaction.
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