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I. BACKGROUND

There has been an increasing interest into blurring the
line between human-interaction and database systems. Sev-
eral research papers tackled the Human-Database Interaction
(HDI) challenge, yet none of them provides a holistic HDI
approach. In this talk, we briefly describe dbTinder, a database
engine that bridges the gap between the conversation approach
humans use to interact and the Query— Answer approach
used in classic database systems. To achieve that, dbTinder
turns HDI into an intent discovery process where the system
pro-actively converses with the user to guide her towards
potentially interesting tuples in the database.

II. THE DBTINDER APPROACH

There have been efforts in the recent past [1], [2] that cater
to the SQL-agnostic user who prefers to query databases using
natural language. With an advent of touch-based interfaces [3],
[4], the end user tends to replace keyword-based querying with
swipes and drop-down option selections. dbTinder considers
the following interaction modes to converse with the human
(see Figure 1):
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Fig. 1. Human-Database Interaction (HDI) modeled as a conversation
1. Lazy HDI (Swipe Left / Right): The user is presented with
a batch of interesting tuple suggestions from the answers to
the initial hint query. The human can then either swipe left
or right on tuples denoting a binary labeling of interesting or
not interesting (inspired by the Tinder dating app). The system
then leverages the swipes to determine what the next batch of
tuples are. Such HDI approach is considered lazy since the
human relies solely on swiping left / right to converse with
the system.

2. Active HDI (Steer Query Plan): The human can explicitly
suggest an alternative “hint” query by picking from the options
of (attribute,value) combinations for steering operators such

as narrow/widen indicating the addition/removal of a selection
predicate from the initial query. Unlike query steering or
active learning systems that can incur a significant user wait
time, dbTinder preserves interactivity by directly modifying
the query execution plan thereby avoiding repeated query
parsing and optimization. Approximate Query Processing [5]
systems enhance user interactivity by sample based execution,
yet they are confined to aggregate queries and may not cater
to human goal, because the sample has no statistical guarantee
of containing the specific tuple(s) the human is looking for.
3. Hybrid HDI (Swipe & Steer): The human can alternate
between swiping left/right and steering during the HDI session.
dbTinder is also equipped with a module that learns what
tuples are interesting, presents them earlier in the conver-
sation, and hence helps the user converge to her goal faster.
Contrary to the existing systems, dbTinder adopts a holistic
approach that considers the following learning strategies:
I. Learning from the Data: Similar to SeeDB [6] and Dice
[7], dbTinder learns from interestingness heuristics within
the data. However, dbTinder creates a candidate pool of
statistically significant query plans based on the precomputed
histograms stored by the query optimizer. The user feedback
allows dbTinder to further filter out the less interesting plans.
II. Learning from the Conversation with the Human:
The system models the user intent to be reached as a goal
and the feedback through swipes as rewards / penalties and
employs a reinforcement learning approach to identify the
optimal sequence of tuples to be retrieved (or the underlying
query plans to be created) to maximize the reward. This is
complementary to the active learning based exploration that
can also learn from user feedback, e.g. AIDE [8]. While
there have been interesting formulations to capture user intent
through search trees [9], they assume that some of the user
preferences are specified apriori through objective functions to
be optimized in the solutions to the search tree. They also offer
limited functionality such as query relaxation as against several
steering operators supported by dbTinder, for which the search
trees can be relatively much more huge. A cooperative game
formulation of data exploration [10] models a dual learning
problem for the user and the database separately, contrary to
which we rely on a unified learning model for user intent.
ITI. Learning from the Crowd Historical Interactions: A
historical interaction session if available can be represented
as a vector of query operators from the entire conversation.
Based on the similarity of the current HDI session to the
historical HDI sessions [11], [12], an exploratory operator can



be included into the intent plan for the current user.
dbTinder, built inside the core kernel of a database engine,
can co-optimize the conversation dynamics close to the data
and thereby achieve interactive performance, leading to more
fluid conversation. In the talk, we will highlight how dbTinder
re-organizes the data based upon the three learning strategies,
introduces HDI-aware access methods, and modifies the phys-
ical query plan to cope with the aforementioned HDI modes.
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