
A Machine Learning-Aware Data Re-partitioning
Framework for Spatial Datasets

Kanchan Chowdhury
Arizona State University

Tempe, USA
kchowdh1@asu.edu

Venkata Vamsikrishna Meduri
Arizona State University

Tempe, USA
vmeduri@asu.edu

Mohamed Sarwat
Arizona State University

Tempe, USA
msarwat@asu.edu

Abstract—Spatial datasets are used extensively to train ma-
chine learning (ML) models for applications such as spatial
regression, classification, clustering, and deep learning. Most of
the real-world spatial datasets are often too large, and many
spatial ML algorithms represent the geographical region as a
grid consisting of several spatial cells. If the granularity of the
grid is too fine, that results in a large number of grid cells leading
to long training time and high memory consumption issues during
the model training. To alleviate this problem, we propose a
machine learning-aware spatial data re-partitioning framework
that substantially reduces the granularity of the spatial grid.
Our spatial data re-partitioning approach combines fine-grained,
adjacent spatial cells from a grid into coarser cells prior to
training an ML model. During this re-partitioning phase, we
keep the information loss within a user-defined threshold without
significantly degrading the accuracy of the ML model. According
to the empirical evaluation performed on several real-world
datasets, the best results achieved by our spatial re-partitioning
framework show that we can reduce the data volume and training
time by up to 81%, while keeping the difference in prediction
or classification error below 5% as compared to a model that
is trained on the original input dataset, for most of the ML
applications. Our re-partitioned framework also outperforms the
state-of-the-art data reduction baselines by 2% to 20% w.r.t.
prediction and classification errors.

Index Terms—Spatial Machine Learning, Spatial Adjacency,
Spatial Data, Data Partitioning

I. INTRODUCTION

Spatial datasets are prominently used to train and test
machine learning (ML) models in the context of various
applications [1]–[4]. For example, a data scientist who might
want to analyze and compare the housing prices across several
regions within a country can make use of spatial machine
learning (spatial ML) in the form of a regression model, which
can help predict the housing prices in various regions. It is
important that such models are learned from several train-
ing samples (spatial regions and their corresponding housing
prices in this example) to yield a competent prediction quality.

Although large-scale training data is beneficial in learning
spatial ML models of high accuracy, it creates bottlenecks such
as long training time and high memory consumption [5], [6].
The training time may range from several hours to even days,
thereby incurring a long waiting time for the data scientists
who need to analyze the prediction results. For example, it
takes 14 days to train 90 epochs of ResNet-50 model with
the ImageNet-1k dataset on Nvidia M40 GPU [5]. In the case

of our prior housing example, if we want to learn a spatial
ML model of high quality, it needs to be trained on a spatial
grid of fine-grained cells corresponding to smaller partitions
of geographical space. This is because a competent spatial
ML model needs to differentiate between the localities of
the housing regions at a high granularity to make accurate
predictions. To empirically validate our claim of long training
time, we trained a support vector regression model on the
Washington home sales dataset [7], which consists of ≈ 100K
spatial cells. Our experiment took more than one day to finish
the training (details are in Section IV).

For the purpose of reducing the volume of spatial datasets,
spatial sampling techniques [8]–[12] have been used effec-
tively in the literature with various applications. Although
sampling techniques are effective in reducing the size of
the training data, they cannot capture the property of spatial
autocorrelation, which is a significant drawback. Spatial auto-
correlation essentially refers to the similarity in the attribute
values among the closely located regions. For example, closely
located regions may have similar housing prices (details of
spatial autocorrelation are in Section II). Spatial ML applica-
tions exploit this autocorrelation property by the use of the
neighborhood information among geolocations. The selection
of a subset of samples by sampling techniques breaks this
adjacency information. For example, if a cell in a grid has
four adjacent cells, the sampling technique might pick the
cell without picking most of its adjacent cells affecting the
adjacency information in the adjacency matrix resulting in the
poor predictive performance of the spatial ML models.

Another category of works, known as spatially constrained
clustering or regionalization techniques [13]–[18], aggregate
the polygons in a spatial dataset into a set of adjacent regions
satisfying various user constraints. These techniques perform
the aggregation in two phases: initialization phase and region
growing phase. If the goal is to cluster n polygons into p
regions, the initialization phase initializes p regions randomly
with p polygons. Later, in the region growing phase, each of
these p regions is grown by assigning adjacent unassigned
polygons to the corresponding region. Regionalization tech-
niques are applied to cluster zones into several groups of
zones where p is much less than n [19]–[22]. To the best
of our knowledge, no previous studies applied regionalization
techniques to training datasets for the purpose of reducing the

training time of spatial ML models. Clustering and regional-
ization techniques suffer from the following disadvantages. i)
Users need to pre-specify the number of regions or clusters
which can be unintuitive and infeasible in the case of large
training datasets. ii) Each region consists of a set of polygons
with an arbitrary shape which makes the computation of the
adjacency matrix cumbersome. iii) Each polygon is always
assigned to one of the adjacent regions, although a single
polygon might need to be considered as a separate region
if it differs significantly from adjacent regions. iv) These
techniques most often end up in suboptimal solutions because
of their sensitivity to the selection of initial regions [23].

To alleviate these concerns, we propose a re-partitioning
framework for spatial datasets by utilizing the idea of spatially
constrained clustering or regionalization which reduces the
number of spatial partitions in the dataset while maintaining
the total loss of information within a user-defined threshold.
To the best of our knowledge, this is the first work to attempt
attenuating the long training time and high memory consump-
tion issues of training a spatial ML model by adopting a spatial
data re-partitioning approach. Our spatial data re-partitioning
approach works by - 1) iteratively merging the adjacent cells
into cell-groups such that the cells within a group have similar
attribute values, 2) and keeping the information loss that
is incurred by our re-partitioning framework under a user-
specified threshold. While the merging property only allows
highly similar, as well as proximal cells to be grouped together,
the loss constraint ensures that the downstream spatial ML
algorithm trained upon these re-partitioned datasets does not
suffer from loss in prediction quality.

We call our framework ML-aware because it overcomes the
limitations of existing data reduction techniques in supporting
the training of spatial ML models. Our re-partitioned dataset
can capture spatial autocorrelation unlike existing sampling
techniques because the neighborhood relationship among cell-
groups can be represented by an adjacency list which we de-
scribe in Section III-B. It has the following advantages over the
regionalization techniques. i) We do not need the specification
of the number of regions. Instead, the user is asked to provide
a numerical loss threshold between 0 and 1, which is the target
dissimilarity between the re-partitioned and the original spatial
grid. This marks an intuitive trade-off as low loss thresholds
result in high quality (low dissimilarity) at the expense of long
training times, whereas high thresholds can reduce the training
time while also yielding low quality or high dissimilarity. ii)
Our merged cell-groups always maintain a rectangular shape
which enables a concise mapping between cell-groups and
their constituent cells and an easy representation of the cell-
groups and the corresponding adjacency matrix.

Fast computation of adjacency speeds up training spatial ML
models such as spatially constrained hierarchical clustering,
which need to calculate the adjacency in every iteration of
the algorithm. Another advantage of maintaining rectangular
cell-groups is that spatial ML models such as spatial kriging
require the coordinates of spatial objects to be a part of the
feature vector. Rectangular cell-groups facilitate the creation

of feature vectors because a rectangle can be represented
by a fixed number of vertices. iii) Our hierarchical merging
algorithm does not merge cells with high dissimilarity to the
nearby cells. It should be noted that dimensionality reduction
techniques [24]–[26] are orthogonal to our approach because
they focus on reducing the #attributes in the dataset and not
the #data instances or #spatial grid cells in the context of
spatial ML. Since our spatial re-partitioning framework does
not reduce the #attributes in a dataset, it can be used in
conjunction with dimensionality reduction for an enhanced
reduction in model training time.

We use conservatively low thresholds of information loss
in our experiments which preserves the high accuracy of an
ML model while also reducing the data volume significantly.
Our experiments with various low thresholds of information
loss study the trade-off between training time and accuracy.
Our empirical evaluation shows that our spatial re-partitioning
framework reduces the training time by up to 81% without
significantly increasing prediction error and outperforms the
prediction quality of the state-of-the-art baselines by 2% to
20% for a variety of spatial ML models.

Following are our high-level contributions:
• To the best of our knowledge, this is the first paper to adopt

a data re-partitioning approach to reduce the long training
time and memory usage of spatial ML models.

• We propose an ML-aware spatial data re-partitioning frame-
work, which maintains the spatial adjacency in order to
prevent the loss of spatial autocorrelation. It reduces the
data volume while losing information within a threshold.

• We evaluate our proposed framework on four real-world
datasets and compare it against three state-of-the-art base-
lines. The experimental results show that our framework
can reduce training time and memory usage of spatial ML
models by up to 81% and 65%, respectively, while keeping
the loss of accuracy below 5%.

• Our framework outperforms baselines by up to 20% in terms
of prediction and classification errors.

II. BACKGROUND

We first discuss a few necessary terms before proceeding
with the details of our proposed framework.

Spatial Cell: - We represent the geographical space as a
two-dimensional m × n grid by dividing the latitudes and
longitudes into ‘m’ and ‘n’ equi-sized intervals, respectively.
Each resulting rectangular unit is termed as a spatial cell. The
input grid fed to the re-partitioning framework in Figure 1
shows the cellular structure of a spatial dataset consisting of
5× 5 cells where lat1, lon1 is an example cell.

Univariate and Multivariate Datasets: - If the schema of
a dataset consists of only one attribute, it is called a univariate
dataset. A multivariate dataset schema consists of two or
more attributes. Each univariate grid cell is represented by
a uni-dimensional feature vector (FV), whereas a multivariate
grid cell is represented by a p-dimensional FV where p is
#attributes and each feature dimension is the attribute value.
The feature vector (FV) of a spatial cell is derived by applying

aggregation operators such as AVG on the FVs of the data
instances mapped to the cell.

Cell-Group: - A group of cells is termed as a cell-group if
and only if every cell in the group is adjacent to at least one
more cell in the same group. In the input grid dataset shown in
Figure 1, {(lat1, lon1), (lat1, lon2), (lat2, lon1), (lat2, lon2)}
is an example cell-group.

Attribute Normalized Data: - A dataset is deemed to be
attribute normalized if the instance values of each attribute
in the dataset lie in the range [0, 1]. For an example dataset
consisting of 2 attributes and 3 instances: (10, 15), (20, 20),
and (30, 10), its attribute normalized variant would be (0.33,
0.75), (0.67, 1.0), and (1.0, 0.5).

Attribute Variation Between Cells: - Attribute variation
between two cells in a grid dataset is the total pair-wise
absolute difference between the attribute values of the cor-
responding cells, averaged across the #attributes. Variation
between cells i and j, V ariationij , is defined as:

V ariationij =
1

p

p∑
k=1

|di(k)− dj(k)| (1)

where p and di(k) denote #attributes and value of attribute k
for cell i, respectively.

Local Loss of Cell-Groups: - If a cell-group cg consists
of t cells (cell1, cell2, .., cellt), local loss of cg for attribute k,
denoted by Losscg(k), is defined as:

Losscg(k) =
1

t

t∑
i=1

|di(k)− cg(k)| (2)

where di(k) and cg(k) denote the value of attribute k for cell
i and cell-group cg, respectively. The attribute values of the
cell-groups are obtained by applying our spatial re-partitioning
framework or a baseline approach upon the input spatial grid.

Information Loss: - We abbreviate the information loss
between the original and the re-partitioned dataset as IFL.
We define IFL in terms of mean absolute percentage error
defined in 2D-STR [27]. Given a spatial grid dataset d and its
re-partitioned form d̄, mathematically, IFL is represented as:

IFL(d, d̄) =
1

n ∗m

n∑
i=1

m∑
j=1

|di(j)− d̄i(j)|
di(j)

(3)

where n denotes the total number of spatial cells in the original
dataset, m is #attributes in the dataset, i refers to a single cell
having a valid (not null) feature vector in the input dataset,
di(j) is the value of attribute j in the feature vector of cell
i, d̄j is the representative value of attribute j of cell i in the
re-partitioned dataset.

Spatial Autocorrelation: - Spatial autocorrelation denotes
the degree to which the attribute values (such as housing price)
of a set of geographical locations (which can be cells or cell-
groups) are similar to each other. It can be defined by statistical
measures such as Moran's I [28] and Geary's C [29]. Moran's
I is frequently used in the literature and is represented as:

I =
N∑

i

∑
j wij

∑
i

∑
j wij(xi − x̄)(xj − x̄)∑

i(xi − x̄)2
(4)

where N refers to #geographical locations, wij is 1 if
locations i and j are adjacent to each other and 0 otherwise,
x is the attribute of interest, and x̄ is the mean of x.

Problem Statement: - Given an m × n grid dataset d
(univariate or multivariate) consisting of m ∗ n spatial cells
and a user-specified threshold θ of information loss (IFL),
we return a re-partitioned dataset d̄ of t cell-groups such
that t < m ∗ n, and t is minimized while information loss
IFL(d, d̄) ≤ θ.

III. OUR SOLUTION

In this section, we elaborate on our machine learning-aware
spatial data re-partitioning algorithm. The input to the re-
partitioning algorithm is the raw spatial grid dataset, and the
output of the algorithm is a new and re-partitioned version of
the input spatial dataset.

lon1 lon2 lon3 lon4 lon5

lat1

lat2

lat3

lat4

lat5

28 27 32 31 32

25 24 23 33 29

34232324

303131

26

35

2731

27

242930

27

29

34
24

32

24

27

30

lon1 lon2 lon3 lon4 lon5

lat1

lat2

lat3

lat4

lat5

Input Dataset Iter: 2, IFL 0.01868 < Threshold 0.02

0.0

0.0286

0.0857

.

.

.

Min-heap, H

lon1 lon2 lon3 lon4 lon5

lat1

lat2

lat3

lat4

lat5

28 27 32 31 32

25 24 33 29

34

23

2324

3031

26

35
27

31 242930

Iter: 1, IFL 0 < Threshold 0.02

Fig. 1: Example of spatial univariate data re-partitioning

Example 1. Figure 1 depicts an example of how our re-
partitioning framework can re-partition a spatial grid dataset.
The input spatial grid in our example consists of 5 × 5 (25)
cells, which is converted to a dataset of 8 cell-groups after
our re-partitioning framework is applied for two iterations.
Although our proposed re-partitioning framework works for
both univariate and multivariate datasets, we use a univariate
dataset of only one attribute for ease of explanation.

This section elaborates on our re-partitioning methodology
at first and then, detail how to use the re-partitioned dataset
to train spatial ML models. Finally, we discuss how a naı̈ve
variant of our re-partitioning solution can be designed to
produce homogeneous partitions and state its pros and cons.

A. Re-partitioning Methodology

Spatial data re-partitioning is an iterative algorithm based
on grouping the cells together such that the attribute variation
(see Equation 1) among the cells within a group is kept to
a minimum. The extent of variation among the cells can be
adjusted based on a min-adjacent variation (details will be
discussed in Section III-A1) that is pre-computed. We require
that all the cells within a group have their cumulative attribute
difference under the pre-computed min-adjacent variation. We
get several smaller partitions of high granularity if the min-
adjacent variation is low and fewer large partitions of low
granularity if the min-adjacent variation is high. In each
iteration of our re-partitioning algorithm, we pick a different
min-adjacent variation that is higher than the variation we
chose in the previous iteration. This gives us increasingly
relaxed partitions of larger sizes with more iterations.

Figure 2 depicts the system architecture of our re-
partitioning framework. Our system picks an updated value
of the min-adjacent variation in each iteration. Subsequently,
Cell-Group Extractor finds the rectangular groups of adjacent
cells where the variation among the cells within the group
is at most the value of the min-adjacent variation. Once we
retrieve all such rectangular cell-groups, each group of cells
acts as a single cell in the new dataset, the details of which
are discussed in Section III-A2. After that, Feature Allocator
creates feature vectors for the cell-groups which is elaborated
in Section III-A3. Finally, we calculate the information loss
between the input dataset and the new re-partitioned dataset,
which will be discussed in section III-A4. We proceed to
the next iteration if the information loss is less than a user-
specified threshold and exit otherwise.

Fig. 2: System architecture of the proposed framework

1) Min-Adjacent Variation Calculator: As we have dis-
cussed before, spatial cells are binned to a cell group if
the attribute variation among them is below the min-adjacent
variation. Our framework pre-computes the variation values
between all possible pairs of adjacent cells and stores them
in a min-adjacent variation heap data structure (min-heap), H.
The input dataset is converted to an attribute normalized form
before computing the variation values. This is because, in a
multivariate dataset, the ranges of some of the attributes might
differ significantly from those of other attributes. If we use
unnormalized attribute values, the variation will be dominated
by attributes having high ranges of values. We pre-compute
H exactly once at the beginning, and in each re-partitioning
iteration, we pop the root node from H and use it as the
updated min-adjacent variation (minAdjacentV ariation).

Example 2. For the input dataset shown in Figure 1,
the value of minAdjacentV ariation in the first iteration
is 0 because it is the least possible variation among all
pairs of adjacent cells (variation between normalized values
of (lat3, lon2) and (lat3, lon3)). In the second iteration,
minAdjacentV ariation will be 0.02857143, which is the
second-least variation and happens to be the variation be-
tween normalized values of pairs (lat1, lon1) and (lat1, lon2).

2) Cell-Group Extractor: Similarly to min-adjacent varia-
tion calculator, attribute-normalized form of the input dataset
is sent as input to this cell-group extractor. After calculating
minAdjacentV ariation, our next target is to find all groups
of adjacent cells where all adjacent pairs of cells within the

same group have a variation ≤ minAdjacentV ariation. All
possible pairs of cells within a cell-group need not maintain
the minAdjacentV ariation, but all possible adjacent pairs of
cells should maintain this variation. If a cell does not have any
other adjacent cell with variation ≤ minAdjacentV ariation,
that cell alone forms a cell-group. A cell with null feature
vector forms a cell-group with other adjacent null cells.

Although our aim is to minimize the number of partitions
that can be formed with the minAdjacentV ariation, the
optimal solution to this problem has to enumerate an expo-
nential search space. Therefore, we propose a greedy heuristic
which can use any possible cell within the grid as the starting
point. Without loss of generality, we use the top-left corner
of the spatial grid as the starting point. The algorithm for
extracting all cell-groups having minAdjacentV ariation is
shown in Algorithm 1. This algorithm returns two mappings:
cell index and cell-group index. While cell-index maps a cell
to its corresponding cell-group, cell-group index stores for a
cell-group the positions of first row, last row, first column, and
last column of all cells forming the cell-group.

Algorithm 1: Extracting cell-groups
input : Original dataset (gridData) and minAdjacentV ariation
output: Mapping from cell-groups to cells gIndex and from cells to

cell-groups cIndex
1 Let dataNorm be the attribute normalized gridData;
2 gIndex← ∅;
3 Let cIndex and visitedCell be 2 dimensional lists of all zeros with size

equal to input grid;
4 for each cell in dataNorm do
5 Let vCount be number of vertically adjacent cells with

variation ≤ minAdjacentV ariation;
6 Let hCount be the number of horizontally adjacent cells with

variation ≤ minAdjacentV ariation;
7 Let rCount be the number of horizontally and vertically adjacent cells

forming a rectangle with variation ≤ minAdjacentV ariation;
8 maxCount← max(vCount, hCount, rCount);
9 for each cell (i, j) counted for maxCount do

10 visitedCell(i, j)← 1;
11 cIndex(i, j)← length(gIndex);
12 end
13 Let rBeg, rEnd, cBeg, and cEnd be the first row, last row, first

column, and last column positions respectively of all cells counted for
maxCount;

14 gIndex← gIndex ∪ (rBeg, rEnd, cBeg, cEnd);
15 end

Example 3. In Figure 1, assume that 0.02857143 is
the value of minAdjacentV ariation in the current itera-
tion (iteration 2). From cell (lat2, lon1), we can move 3
steps horizontally and 2 steps vertically without exceeding
minAdjacentV ariation. Therefore, values of hCount and
vCount in Algorithm 1 are 3 and 2, respectively. We can also
form a rectangle of 3 columns and 2 rows from (lat2, lon1) in
which all possible adjacent pairs of cells have a variation ≤
0.02857143. So, rCount is 6, which is higher than hCount
and vCount. Therefore, these 6 cells can form a cell-group.

3) Feature Allocator: After re-partitioning the spatial cells
into various cell-groups, our next task is to calculate the
feature vector for each cell-group. A cell-group consisting
of cells having null feature vectors is also assigned a null
feature vector. Each dimension in the feature vector represents
a distinct attribute in the multivariate representation, and it is

assigned a representative attribute value for all the merged cells
within the entire cell-group. For each feature in the feature set,
users need to define a parameter, known as aggregation type,
in this step. Aggregation type takes two values: summation
and average. As an example, if the feature is the count of
criminal cases, summing up the counts for constituent cells
forms the count for a cell-group. On the other hand, in the case
of average housing prices, averaging the prices of constituent
cells should be ideal. For the first case (summation is the
aggregation type), we directly sum up the attribute values of
constituent cells to form the cell-group feature. In the latter
case, when average is the aggregation type, we noticed that
choosing the average attribute value of all cells does not
always minimize the local loss. Sometimes, choosing the most
frequently occurring attribute value among all the cells as
the representative cell-group value could minimize the local
loss. Therefore, we select the best of these two options in the
case of average aggregation type. The average value of an
attribute is rounded to the nearest integer in the case of an
integer-typed attribute. Although we use attribute-normalized
form of the input dataset for earlier steps, this step works on
the original input dataset. Algorithm 2 shows how to allocate
feature vectors to all cell-groups of a re-partitioned dataset.

Algorithm 2: Allocating features to cell-groups
input : Original dataset gridData, mapping from cell-groups to cells

gIndex, and feature aggregation types aggType
output: Feature vectors of cell-groups newData

1 for each cell-group cg in gIndex do
2 for each feature k in gridData do
3 if aggType(k) == summation then
4 Let gFeature be the sum of feature k of all cells under cg;
5 newData(cg, k)← gFeature;
6 continue;
7 end
8 Let A be the average of feature k of all cells under cg;
9 Let B be the value of k at maximum number of cells under cg;

10 lossA← losscg(k) assuming newData(cg, k)← A;
11 lossB ← losscg(k) assuming newData(cg, k)← B;
12 if lossA ≤ lossB then
13 newData(cg, k)← A;
14 else
15 newData(cg, k)← B;
16 end
17 end
18 end

Example 4. Considering the same cell-group discussed
in Example 3 with aggregation type average, the average
attribute value of the group, A (in Algorithm 2), is 23.67,
which is rounded to 24 since the attribute value is of integer
type. The value of B for the cell-group is 23, as it is the most
frequent value. Since lossA and lossB in Algorithm 2 are
equal (4), the attribute value of the cell-group becomes 24.
Allocating representative attribute values in a similar fashion
to all the cell-groups in this example will result in the re-
partitioned grid shown in iteration 2 of Figure 1.

4) Information Loss Calculator: After finding the feature
vectors of all cell-groups, we calculate the information loss
(IFL) between the input dataset and re-partitioned dataset
in the current iteration using the formula of IFL defined in
Equation 3. The formula defined as IFL stands for mean

absolute percentage error. Although other forms of information
loss exist, such as normalized root mean square error, we
opt for mean absolute percentage since we aim at making
our re-partitioning framework sensitive to errors of individ-
ual instances relative to their corresponding original values.
When calculating IFL using Equation 3, we need to retrieve
the representative attribute values of input cells in the re-
partitioned dataset. We take into account the aggregation type
of each attribute used in the feature allocation step to calculate
a representative attribute value. Each cell in the input dataset
is mapped to a cell-group in the re-partitioned dataset. The
attribute value of a cell-group should be divided by the number
the cells within the cell-group if summation is the aggregation
type. Otherwise, the attribute value of a cell-group is directly
used as representative values of constituent cells.

Example 5. In Figure 1, IFL is 0 after the first iteration
and 0.01868 after the second iteration based on Equation 3.

B. Training with Re-partitioned Dataset

A spatial grid dataset is formed such that all data objects
that map to a cell are aggregated to produce the feature
vector of the corresponding cell. Therefore, when a spatial
grid dataset is used to train a spatial ML model, each cell is
treated as an individual data object (instance) in the training
dataset. There are two essential steps in training a spatial ML
model with re-partitioned dataset - a) training data preparation
and b) actual model training. The preparation step comprises
feature vector creation and adjacency matrix computation out
of the re-partitioned grid. The ML models consume the feature
vectors of the re-partitioned data and the adjacency matrix as
input. Our effort in this paper is focused on spatial data re-
partitioning and training data preparation. The actual training
of ML models is done out-of-the-box using PySAL [30], Pyin-
terpolate [31], and scikit-learn [32] libraries. While the feature
vector creation is straightforward for regression, clustering,
and classification models, in the case of spatial kriging, the
feature vectors consist of the coordinates of the vertices of cell-
groups along with the attribute values. Among the regression
models, geographically weighted regression takes the centroids
of cell-groups as part of the feature vectors.

Spatial ML systems such as PySAL encode the adjacency
information with two dictionaries: one for neighbors list and
another for weights associated with each neighbor. Our re-
partitioning framework supports the creation of such adjacency
lists along with weights. Since the input spatial cells are
merged into cell-groups in our re-partitioned grid, creation of
the adjacency list requires some non-trivial effort. We identify
neighboring cell-groups based on the boundary cells within
a cell-group. Since our new partitions are invariably shaped
as rectangles, the neighboring cell-groups can be identified
from the cells adjacent to the left-most, right-most, top-most
and bottom-most cells acting as boundaries of a cell-group.
Algorithm 3 contains the pseudocode to retrieve the adjacency
list of cell-groups from the re-partitioned dataset. It is a binary
adjacency list, where weight is 1 for each neighbor included
in the neighbor list of a cell-group and 0 otherwise.

In order to train spatial ML models, we split each dataset
into two parts - a) training data (80%) and b) test data
(20%). We train each spatial ML model separately upon the
original datasets and the reduced datasets obtained via our re-
partitioning framework and all other data reduction baselines.
For a fair comparison, we use the same hyperparameters to
train each spatial model consistently regardless of whether the
underlying spatial grid is prepared out of the original data or
the reduced data. Hyperparameters used for various spatial ML
models are reported in Table I under Section IV-A4.

Adjacency

List

0

4

3
2

1

6

7

5

lon1 lon2 lon3 lon4 lon5

lat1

lat2

lat3

lat4

lat5

Neighbors(0): [1, 2]

Neighbors(1): [0, 2, 3, 4]

Neighbors(2): [0, 1, 3, 5, 6]

Neighbors(3): [1, 2, 4, 5, 6, 7]

Sample ordering of cell-groups

Adjacency list of cell-groups

Neighbors(4): [1, 3, 7]

Neighbors(5): [2, 3, 6]

Neighbors(6): [3, 5, 7]

Neighbors(7): [3, 4, 6]

Fig. 3: An illustration of adjacency list for cell-groups

Algorithm 3: Retrieving adjacency list of cell-groups
input : Mapping between cell-groups and cells: gIndex, cIndex
output: Neighbors of cell-groups, neighbors

1 Let neighbors be an empty dictionary;
2 for each cell-group cg in gIndex do
3 Let rBeg, rEnd, cBeg, and cEnd be the first, second, third, and

fourth element of cg, respectively;
4 nList← ∅;
5 for each column c between cBeg and cEnd do
6 if (rBeg - 1, c) not in nList then
7 nList← nList ∪ cIndex(rBeg − 1, c);
8 end
9 if (rEnd + 1, c) not in nList then

10 nList← nList ∪ cIndex(rEnd + 1, c);
11 end
12 end
13 for each row r between rBeg and rEnd do
14 if (r, cBeg - 1) not in nList then
15 nList← nList ∪ cIndex(r, cBeg − 1);
16 end
17 if (r, cEnd + 1) not in nList then
18 nList← nList ∪ cIndex(r, cEnd + 1);
19 end
20 end
21 neighbors(cg)← nList;
22 end

Example 6. Figure 3 shows the adjacency list for the re-
partitioned dataset obtained in the second iteration of Figure
1. Consider cell-group 1, the neighbors of which are cell-
groups 0, 2, 3, and 4.

C. Mapping from Re-partitioned Cell-Groups to Input Cells

Our re-partitioned framework produces a compact grid with
cell-groups which can be used to train spatial ML models. In
the context of applications such as regression, the spatial ML
models predict the values of attributes whose values are not
always present in the original dataset. For example, housing
prices in the home sales dataset [7] can be predicted from other
existing attributes such as build year, renovation year, size of
living area, etc. Note that the predicted housing price is for the
cell-groups, and the user may want to know the housing price
for the individual data instances or cells. In such a scenario,

we need to re-construct the attribute values for cells based on
the predicted attribute values of the cell-groups.

We store the mapping between the cell-group and its con-
stituent cells in a hash map to enable a constant-time lookup.
In order to enable the re-construction of attribute values for
the constituent cells in a cell-group, we first need to retrieve
the cells belonging to a cell-group, and then transform the
cell-group features into features of constituent cells. This
transformation depends on the aggregation type used during
the feature allocation step of re-partitioning process. For a
particular attribute in the feature set, if the aggregation type
provided by the user is average during the feature allocation
step, the value of the corresponding attribute for a cell-group
can be directly assigned to all cells belonging to that cell-
group. If summation is the aggregation type during feature
allocation, corresponding value of a cell-group should be
divided by the number the cells within the cell-group.

54

29

105
138

96

24

81

186

lon1 lon2 lon3 lon4 lon5

lat1

lat2

lat3

lat4

lat5

Re-partitioned Dataset

Reverse

Mapping

lon1 lon2 lon3 lon4 lon5

lat1

lat2

lat3

lat4

lat5

27 27 32 32 32

23 23 23 35 29

35232323

313131

27

35

2731

27

243131

Re-constructed Input Dataset

Fig. 4: Sample re-construction of cells from cell-groups

Example 7. Figure 4 shows an example of how attribute
values of all cells can be re-constructed from the cell-groups
in a sample re-partitioned dataset. The sample dataset is
univariate, and we assume that the aggregation type for the
attribute is summation. The cell-group consisting of cells (lat1,
lon1) and (lat1, lon2) has an attribute value of 54. Therefore,
the attribute value of each of its constituent cells should be
27 as there are 2 cells in that cell-group.

D. Homogeneous Re-partitioning Solution
Our proposed re-partitioning framework produces rectan-

gular cell-groups of heterogeneous sizes, which require us
to maintain the mapping between the input cells and the
re-partitioned cell-groups. We implement a naı̈ve variant of
our re-partitioning approach as a baseline, which merges
adjacent rows and adjacent columns to arrive at a coarse-
grained grid with a pre-specified target resolution. We start
with the least possible granularity of merging two adjacent
rows and columns to obtain a coarse-grained grid, and we
incrementally increase the value of the merged cells to 3, 4,
.., in the subsequent iterations as long as the information loss
does not exceed the pre-specified threshold.

Although this approach produces homogeneously-sized cell-
groups, it suffers from the following disadvantages: i) the size
of the dataset reduces with geometric progression after every
iteration resulting in a high increase in information loss and
ii) some of the cells in adjacent rows or columns might differ
significantly from each other, as they are merged regardless of
their similarity or dissimilarity.

IV. EXPERIMENTAL EVALUATION

In this section, we report the experimental results to show
the effectiveness of our re-partitioning framework which is
publicly available [33]. Following are the insights we try to
obtain empirically:
1) What is the data reduction w.r.t. the #spatial cells that

we can achieve using our re-partitioning framework? We
perform this evaluation in Section IV-B.

2) What are the savings in training time and memory con-
sumption that can be obtained by training a spatial ML
model upon the re-partitioned dataset instead of the original
spatial grid dataset? See IV-C for details.

3) What is the penalty incurred w.r.t. increase in prediction
error if a spatial ML model is trained on re-partitioned
dataset? We experimentally evaluate this in Section IV-D.

4) We evaluate the homogeneous re-partitioning variant (pro-
posed in Section III-D) in Section IV-E.

A. Experimental Setup

Not to rely on a high configuration setup, all experiments are
conducted on an Ubuntu Linux machine with 48 CPU cores
(Intel Xeon CPU E5-2687 3.00GHz) and 32GB memory size.

1) Evaluation Metrics:
• Spatial cell reduction: also termed as data volume reduc-

tion, denotes the number of spatial cells in the reduced re-
partitioned dataset, relative to the original dataset.

• Cell reduction time: indicates the total time consumed by
the re-partitioning algorithm until convergence.

• Standard error (SE) of regression: indicates the average
distance of the ground truth from the regression line. It
is also termed as residual standard error. It is one of two
goodness-of-fit measures for spatial regression analysis [34].

• Pseudo r-squared (R2): another widely used goodness-of-
fit measure for spatial regression analysis. Denoting actual
observation, predicted value, mean of observations, and the
number of observations as yi, ŷi, ȳ, and n respectively,
pseudo r-squared [35] is defined as follows:

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

(5)

Besides the aforementioned evaluation metrics, we measure
the mean absolute error (MAE) and root mean square error
(RMSE) for spatial regression and kriging. We evaluate the
goodness of multi-class classification models using weighted
F1-score, which is the weighted mean of class-wise F1-scores
where weights are the class probabilities [36]. To evaluate the
benefits of the re-partitioned dataset, we measure the training
time and memory consumption of spatial ML models.

2) Dataset Preparation: Four real-world datasets are used
to evaluate the efficiency of our re-partitioning framework
which include New York City (NYC) taxi trip dataset [37],
Washington King county home sales dataset [7], Chicago
abandoned vehicles dataset [38], and NYC earning dataset
[39]. We prepare a univariate dataset out of the Chicago
abandoned vehicles by counting the #service requests in each

spatial cell, whereas, for the home sales dataset, we prepare a
multivariate dataset consisting of seven attributes: price of the
home, #bedrooms, #bathrooms, size of living area, size of
parking lot, build year, and renovation year. We calculate these
attribute values by averaging all sales records in each cell.
For the NYC taxi trip dataset, we prepare a univariate dataset
with the #pickups in each spatial cell during a month and a
multivariate dataset with total #pickups, total #passengers,
summation of distances, and summation of taxi fares for all
the rides in each cell. In the case of NYC earning dataset, the
univariate dataset consists of total #jobs in each cell while the
multivariate dataset has five attributes: land area, water area,
#jobs with earning ≤ $1250/month, #jobs with earning
between $1251/month and $3333/month, and #jobs with
earning ≥ $3333/month.

Spatial ML models trained on fine-grained grids perform
better than their coarse-grained counterparts in terms of pre-
diction and classification accuracy. On the other hand, training
spatial ML models with fine-grained grids suffers from long
training time and high memory usage. Our framework enables
spatial ML practitioners to train models on fine-grained grids
while incurring less training time and memory consumption.
In order to evaluate our framework upon grids of varying
granularity w.r.t. reducing training time and memory usage,
we use three grid granularities - a) ≈ 100k (315× 318) cells,
b) ≈ 78k (279× 280) cells, and c) ≈ 36k (191× 193) cells.

Empty cells in a grid, if any, can be tackled with data
imputation methods [40]–[43]. Applying imputation as a pre-
processing step presents a trade-off between accuracy and data
reduction. In our framework, we currently do not incorporate
imputation methods in the interest of preserving accuracy, and
represent empty cells with null feature vectors. Our framework
allows empty cells to be merged with other adjacent empty
cells but not with the adjacent non-empty cells.

3) Baselines: We compare the performance of our re-
partitioning framework with two state-of-the-art methods that
are used widely in the literature to reduce data volume.
1) Sampling: We evaluate the effect of sampling on spatial

training data by implementing the spatial sampling method
proposed by Guo et al. [9].

2) Regionalization: We implement the optimized regionaliza-
tion technique proposed by Biswas et al. [13] and use the
regionalized data to train spatial ML models.

3) Spatially Contiguous Clustering: We implement the hi-
erarchical clustering technique proposed by Kim et al. [15]
and use the clustered data to train spatial ML models.
For a fair comparison, we set the number of target sam-
ples/regions/clusters for the baselines to the counts of
cell-groups returned by our re-partitioning framework for
various IFL thresholds.

4) Model Hyperparameters: Table I lists the values of the
hyperparameters used to train the spatial ML models.

B. Evaluating Cell Reduction Performance

The number of cells in the grid before applying the re-
partitioning algorithm is referred to as initial cell count. We

36k 78k 100k
Initial Cell Counts

0

25000

50000

75000

100000
No

. o
f S

pa
tia

l C
el
ls Original

IFL 0.05
IFL 0.1
IFL 0.15

(a) Taxi trip multivariate

36k 78k 100k
Initial Cell Counts

0

25000

50000

75000

100000

No
. o

f S
pa

tia
l C

el
ls Original

IFL 0.05
IFL 0.1
IFL 0.15

(b) Home sales multivariate

36k 78k 100k
Initial Cell Counts

0

25000

50000

75000

100000

No
. o

f S
pa

tia
l C

el
ls Original

IFL 0.05
IFL 0.1
IFL 0.15

(c) Earning multivariate

36k 78k 100k
Initial Cell Counts

0

25000

50000

75000

100000

No
. o

f S
pa

tia
l C

el
ls Original

IFL 0.05
IFL 0.1
IFL 0.15

(d) Taxi trip univariate

36k 78k 100k
Initial Cell Counts

0

25000

50000

75000

100000

No
. o

f S
pa

tia
l C

el
ls Original

IFL 0.05
IFL 0.1
IFL 0.15

(e) Vehicles univariate

36k 78k 100k
Initial Cell Counts

0

25000

50000

75000

100000

No
. o

f S
pa

tia
l C

el
ls Original

IFL 0.05
IFL 0.1
IFL 0.15

(f) Earning univariate

Fig. 5: Evaluating cell reduction performance of re-partitioning algorithm with various values of information loss on all datasets

0.05 0.10 0.15
Information Loss

0

100

200

300

400

500

El
ap

se
d
Ti
m
e
in
 S
ec

on
ds

36k initial cells
78k initial cells
100k initial cells

(a) Taxi trip multivariate

0.05 0.10 0.15
Information Loss

0

100

200

300

400

500

El
ap

se
d
Ti
m
e
in
 S
ec

on
ds

36k initial cells
78k initial cells
100k initial cells

(b) Home sales multivariate

0.05 0.10 0.15
Information Loss

0

100

200

300

400

500

El
ap

se
d
Ti
m
e
in
 S
ec

on
ds

36k initial cells
78k initial cells
100k initial cells

(c) Earning multivariate

0.05 0.10 0.15
Information Loss

0

5

10

15

20

El
ap

se
d
Ti
m
e
in
 S
ec

on
ds

36k initial cells
78k initial cells
100k initial cells

(d) Taxi Trip univariate

0.05 0.10 0.15
Information Loss

0

5

10

15

20

25

El
ap

se
d
Ti
m
e
in
 S
ec

on
ds

36k initial cells
78k initial cells
100k initial cells

(e) Vehicles univariate

0.05 0.10 0.15
Information Loss

0

20

40

60

El
ap

se
d
Ti
m
e
in
 S
ec

on
ds

36k initial cells
78k initial cells
100k initial cells

(f) Earning univariate

Fig. 6: Analyzing required time for running re-partitioning algorithm with various values of information loss on all datasets

TABLE I: Hyperparameters of spatial ML models
Model Hyperparameters

Random Forest Regression n estimators: 225, max depth: 7, min samples leaf: 20, criterion: mse
Support Vector Machine Regression kernel: rbf, C: 15, gamma: 0.5, epsilon: 0.01
Geographically Weighted Regression kernel: gaussian, criterion: AICc, fixed: False

Spatial Kriging search radius: 0.01, max range: 0.32, number of neighbors: 8
Lag Regression weight: adjacency list, adjacency type: Binary

Error Regression weight: adjacency list, adjacency type: Binary
Gradient Boosting Classification n estimators: 200, max depth: 5, min samples leaf: 12, loss: deviance

K-Nearest Neighbor Classification leaf size: 18, n neighbors: 7

evaluate our re-partitioning algorithm for initial cell counts
of approximately 36k, 78k, and 100k. We analyze the spatial
cell reduction and time for three thresholds of user-specified
information loss: 0.05, 0.1, and 0.15.

Figure 5 depicts the spatial cell reduction on all datasets
with various thresholds of information loss. Our re-partitioning
framework can reduce #spatial cells by around 30% with
an information loss of only 0.05. Increasing the values of
information loss (IFL) thresholds to 0.1 and 0.15 reduces
#spatial cells by ∼37% and ∼42%, respectively. To quantify
the effect of the % of spatial cell reduction, we also present
the training time and memory usage in Section IV-C.

Upon observing the plots shown in Figure 5, we can state
that the cell reduction achieved by our framework is unaffected
by #attributes in the dataset because #cells reduced is approx-
imately equal on both multivariate and univariate datasets. This
can be attributed to two factors. Firstly, using the attribute-
normalized form of input dataset during the computation
of min-adjacent variation and cell-group extraction of the
re-partitioning algorithm helps in treating all the attributes
equally. Secondly, averaging the total IFL across various
attributes in Equation 2 makes it agnostic to #attributes.
Although #cells decreases as the IFL threshold increases, the
rate of cell reduction keeps getting lower. It indicates that
#cells cannot be reduced much after IFL threshold reaches a
high value. Thus, the IFL threshold marks a trade-off between
the training time and prediction error.

Figure 6 shows the cell reduction time with various IFL
thresholds on both multivariate and univariate datasets. We can
observe that the cell reduction time on the multivariate datasets
varies from 50 to 390 seconds for various thresholds of IFL

and initial cell counts. The cell reduction time increases with
the increase in both IFL threshold and initial cell count. With a
higher value of initial cell count, the re-partitioning algorithm
needs to process a higher number of partitions. As the IFL
threshold increases, the algorithm runs for more iterations
resulting in higher elapsed time. In the case of univariate
dataset, the elapsed time during re-partitioning is in the range
of 2 to 15 seconds. Elapsed time is higher for the multivariate
datasets as compared to the univariate datasets because, IFL,
minAdjV ariation, and other statistics need to be calculated
for several attributes in the case of a multivariate dataset.
Note that the price we pay in terms of cell reduction time
is negligible as compared to the savings we obtain for model
training time which will be presented in Section IV-C.

C. Evaluating Training Time and Memory Usage

In this section, we analyze the performance of our frame-
work in terms of reducing training time and memory usage
when the re-partitioned dataset is applied to train four types
of spatial ML models: regression, kriging, clustering, and clas-
sification. We need not compare the training time and memory
usage against the baselines because our implementation of
baselines, as discussed in Section IV-A3, retrieves exactly the
same number of cell-groups as required by our re-partitioning
framework. This results in similar training times and memory
usage for all the approaches, including the baselines.

1) Evaluation with Regression Models: We evaluate the
reduction of training time and memory usage for five spatial
regression models: spatial lag, spatial error, geographically
weighted, spatial support vector, and spatial random forest
regression models. Since regression can only be applied to
multivariate datasets, we use three multivariate datasets (taxi
trip, home sales, and earning datasets) and their re-partitioned
forms to train and test regression models. Also, we have three
versions of each original dataset with different counts of initial
cells as discussed in Section IV-B. We use the largest original
datasets with ≈ 100k cells and their re-partitioned versions to
train each model. We use the attributes taxi fare amount, home

0.00 0.05 0.10 0.15
Information Loss

0

200

400

El
ap

se
d
Ti
m
e
in
 M

in
ut
es

Taxi trip multi
Home sales multi
Earning multi

(a) Lag regression

0.00 0.05 0.10 0.15
Information Loss

0

100

200

300

El
ap

se
d
Ti
m
e
in
 M

in
ut
es

Taxi trip multi
Home sales multi
Earning multi

(b) Error regression

0.00 0.05 0.10 0.15
Information Loss

20

40

60

El
ap

se
d
Ti
m
e
in
 M

in
ut
es

Taxi trip multi
Home sales multi
Earning multi

(c) GWR

0.00 0.05 0.10 0.15
Information Loss

500

1000

1500

2000

El
ap

se
d
Ti
m
e
in
 M

in
ut
es

Taxi trip multi
Home sales multi
Earning multi

(d) SVM regression

0.00 0.05 0.10 0.15
Information Loss

5

10

15

20

El
ap

se
d
Ti
m
e
in
 M

in
ut
es

Taxi trip multi
Home sales multi
Earning multi

(e) RF regression

0.00 0.05 0.10 0.15
Information Loss

2.5

5.0

7.5

10.0

12.5

El
ap

se
d
Ti
m
e
in
 M

in
ut
es

Taxi trip uni
Cars uni
Earning uni

(f) Spatial kriging

Fig. 7: Performance evaluation of re-partitioning system in terms of training time reduction of regression and kriging models

0.00 0.05 0.10 0.15
Information Loss

10000

20000

30000

M
em

or
y
Us

ag
e
in
 M

B Taxi trip multi
Home sales multi
Earning multi

(a) Lag regression

0.00 0.05 0.10 0.15
Information Loss

10000

20000

30000

M
em

or
y
Us

ag
e
in
 M

B Taxi trip multi
Home sales multi
Earning multi

(b) Error regression

0.00 0.05 0.10 0.15
Information Loss

340

360

380

400

M
em

or
y
Us

ag
e
in
 M
B Taxi trip multi

Home sales multi
Earning multi

(c) GWR

0.00 0.05 0.10 0.15
Information Loss

400

500

600

M
em

or
y
Us

ag
e
in
 M

B Taxi trip multi
Home sales multi
Earning multi

(d) SVM regression

0.00 0.05 0.10 0.15
Information Loss

6000

8000

10000

12000

M
em

or
y
Us

ag
e
in
 M

B Taxi trip multi
Home sales multi
Earning multi

(e) RF regression

0.00 0.05 0.10 0.15
Information Loss

2000

4000

6000

8000

10000

M
em

or
y
Us

ag
e
in
 M

B Taxi trip uni
Cars uni
Earning uni

(f) Spatial kriging

Fig. 8: Performance evaluation of re-partitioning system in terms of memory usage reduction of regression and kriging models

0.00 0.05 0.10 0.15
Information Loss

20

30

40

50

El
ap

se
d
Ti
m
e
in
 M

in
ut
es

Taxi trip multi
Home sales multi
Earning multi

(a) GB classifier

0.00 0.05 0.10 0.15
Information Loss

10

20

30

El
ap

se
d
Ti
m
e
in
 M

in
ut
es

Taxi trip multi
Home sales multi
Earning multi

(b) KNN classifier

0.00 0.05 0.10 0.15
Information Loss

0

10

20

30

40

50

El
ap

se
d
Ti
m
e
in
 M

in
ut
es

Taxi trip multi
Home sales multi
Earning multi
Taxi trip uni
Cars uni
Earning uni

(c) Clustering
Fig. 9: Evaluating clustering and classification training time

0.00 0.05 0.10 0.15
Information Loss

4000

6000

8000

M
em

or
y
Us

ag
e
in
 M

B Taxi trip multi
Home sales multi
Earning multi

(a) GB classifier

0.00 0.05 0.10 0.15
Information Loss

2000

3000

4000

5000

M
em

or
y
Us

ag
e
in
 M

B Taxi trip multi
Home sales multi
Earning multi

(b) KNN classifier

0.00 0.05 0.10 0.15
Information Loss

0

5000

10000

15000

20000

M
em

or
y
Us

ag
e
in
 M

B Taxi trip multi
Home sales multi
Earning multi
Taxi trip uni
Cars uni
Earning uni

(c) Clustering

Fig. 10: Evaluating clustering and classification memory usage

prices, and #jobs with earning ≥ $3333/month as target
attributes for taxi trip, home sales, and earning datasets respec-
tively, while treating other attributes as features. Training time
and memory usage of spatial lag model, spatial error model,
geographically weighted regression, support vector regression,
and random forest regression have been reported in Figures 7
and 8. We compare the values of the evaluation metrics for
the original dataset against the re-partitioned datasets with IFL
thresholds of 0.05, 0.1, and 0.15.

Our experimental results show that the re-partitioned dataset
with IFL threshold 0.05 can reduce the training time in the
range [40%, 77%]. Training time reduction is the highest
for the support vector regression model and the least for
the random forest regression model. The performance gain
in terms of training time is higher for models that usually
take a long training time, such as support vector regression,
geographically weighted regression, and spatial lag model,
which is beneficial because training time is a concern for
those models. In the case of memory usage reduction, the
range varies from 9.5% to 47% for the same IFL threshold.
We observe the highest savings for the spatial lag regression
model, while geographically weighted regression model has

the least savings. Similarly to the training time, memory sav-
ings are higher for models that consume high memory during
training, such as spatial lag regression, spatial error regression,
and random forest regression. In the case of geographically
weighted regression and support vector regression models,
although we see a reduction in training time, memory savings
are not significant enough because the memory consumption
on the original dataset itself is very low, which is less than
2GB. On the other hand, memory usage for the original
datasets in the case of random forest regression and lag
regression is around 18GB, where our re-partitioned dataset
achieves the highest memory reduction.

Training time reduction for IFL thresholds of 0.1 and 0.15
are in the ranges [50%, 81%] and [58%, 84%], respectively.
For these two thresholds, although we allow the loss of infor-
mation to be 2× and 3× higher as compared to a threshold of
0.05, we do not achieve significant training time reduction as
compared to the reduction we get for the 0.05 IFL threshold.
We achieve memory reduction of up to 65% and 72% for IFL
thresholds of 0.1 and 0.15, respectively. Similarly to training
time, memory reduction for high thresholds is not significantly
higher as compared to the low threshold. Therefore, the choice
of IFL threshold should be a trade-off between training time
or memory usage reduction and model quality which we
discuss in Section IV-D. Re-partitioned datasets with high IFL
thresholds follow a similar pattern as the re-partitioned datasets
with low threshold w.r.t. one of our earlier observation that
savings in training time and memory usage are higher for
models that take long training time and consume high memory.

2) Evaluation with Classification Models: Besides regres-
sion, we also evaluate our framework upon two classification
models: gradient boosting and k-nearest neighbor classifica-
tion. To train these models, we convert the target variable
of every multivariate dataset into a categorical variable by
mapping its values into five distinct range bins representing
multiple classes: low, low-medium, medium, medium-high,
and high. Figures 9a, 9b, 10a, and 10b show that our frame-
work achieves a consistent reduction rate in memory usage

TABLE II: Prediction errors of spatial regression and kriging models
Dataset SE R Squared

Original 112.2 0.92
Re-partitioning 116.06 0.92

IFL = 0.05 Sampling 122.0 0.86
Regionalization 119.6 0.89

Clustering 119.87 0.89
Re-partitioning 117.59 0.917

Taxi Trip IFL = 0.1 Sampling 124.71 0.87
Regionalization 122.3 0.88

Clustering 123.09 0.87
Re-partitioning 119.05 0.905

IFL = 0.15 Sampling 128.27 0.85
Regionalization 125.3 0.865

Clustering 124.68 0.86
Original 276.25 0.81

Re-partitioning 282.6 0.806
IFL = 0.05 Sampling 298.14 0.759

Regionalization 294.21 0.777
Clustering 295.16 0.772

Re-partitioning 287.5 0.80
Home Sales IFL = 0.1 Sampling 304.73 0.754

Regionalization 299.86 0.763
Clustering 299.35 0.76

Re-partitioning 290.3 0.79
IFL = 0.15 Sampling 309.49 0.737

Regionalization 305.11 0.748
Clustering 307.20 0.741

Original 140.11 0.85
Re-partitioning 143.47 0.85

IFL = 0.05 Sampling 160.68 0.79
Regionalization 149.93 0.82

Clustering 151.45 0.81
Re-partitioning 145.57 0.84

Earning IFL = 0.1 Sampling 157.22 0.77
Regionalization 151.83 0.80

Clustering 151.19 0.80
Re-partitioning 148.23 0.83

IFL = 0.15 Sampling 161.57 0.75
Regionalization 155.79 0.79

Clustering 156.04 0.78

(a) Spatial Lag Regression

Dataset SE R Squared
Original 120 0.93

Re-partitioning 121.11 0.924
IFL = 0.05 Sampling 127.89 0.877

Regionalization 125.71 0.887
Clustering 125.48 0.88

Re-partitioning 123.46 0.918
Taxi Trip IFL = 0.1 Sampling 132.35 0.86

Regionalization 129.39 0.881
Clustering 130.12 0.873

Re-partitioning 126.62 0.90
IFL = 0.15 Sampling 137.51 0.84

Regionalization 132.82 0.868
Clustering 134.48 0.859

Original 261.25 0.82
Re-partitioning 267.63 0.81

IFL = 0.05 Sampling 285.19 0.762
Regionalization 277.53 0.776

Clustering 277.92 0.773
Re-partitioning 271.29 0.803

Home Sales IFL = 0.1 Sampling 292.45 0.76
Regionalization 281.6 0.748

Clustering 283.21 0.733
Re-partitioning 277.73 0.774

IFL = 0.15 Sampling 311.61 0.72
Regionalization 289.95 0.737

Clustering 289.32 0.74
Original 124.42 0.83

Re-partitioning 128.25 0.82
IFL = 0.05 Sampling 144.25 0.76

Regionalization 134.28 0.79
Clustering 134.84 0.78

Re-partitioning 130.14 0.82
Earning IFL = 0.1 Sampling 144.46 0.76

Regionalization 136.10 0.78
Clustering 136.78 0.773

Re-partitioning 133.51 0.80
IFL = 0.15 Sampling 145.53 0.75

Regionalization 140.45 0.76
Clustering 142.11 0.757

(b) Spatial Error Regression

Dataset MAE RMSE
Original 131.5 112

Re-partitioning 131.9 112.6
IFL = 0.05 Sampling 141.13 117.23

Regionalization 137.44 116.43
Clustering 138.26 116.88

Re-partitioning 132.6 113.2
Taxi Trip IFL = 0.1 Sampling 142.55 118.41

Regionalization 138.96 117.08
Clustering 139.18 117.74

Re-partitioning 134.7 115.62
IFL = 0.15 Sampling 147.73 124.08

Regionalization 141.7 120.3
Clustering 142.44 120.95

Original 286.31 292.246
Re-partitioning 291.52 299.4

IFL = 0.05 Sampling 305.76 312.78
Regionalization 301.14 310.18

Clustering 301.69 310.82
Re-partitioning 295.5 301.5

Home Sales IFL = 0.1 Sampling 314.43 316.31
Regionalization 306.43 313.47

Clustering 308.15 315.28
Re-partitioning 298.08 305.28

IFL = 0.15 Sampling 317.93 322.38
Regionalization 310.48 317.8

Clustering 311.41 318.16
Original 50.55 113.39

Re-partitioning 52.07 117.36
IFL = 0.05 Sampling 56.34 128.51

Regionalization 54.60 122.64
Clustering 55.46 123.58

Re-partitioning 52.67 118.60
Earning IFL = 0.1 Sampling 57.57 131.41

Regionalization 54.81 123.82
Clustering 55.13 124.21

Re-partitioning 53.73 119.51
IFL = 0.15 Sampling 57.87 132.06

Regionalization 56.04 125.01
Clustering 56.63 125.71

(c) Geographically Weighted Regression

Dataset MAE RMSE
Original 35.05 142.3

Re-partitioning 36.41 145.58
IFL = 0.05 Sampling 37.96 153.16

Regionalization 37.56 150.21
Clustering 37.70 150.93

Re-partitioning 36.83 146.16
Taxi Trip IFL = 0.1 Sampling 38.56 154.3

Regionalization 38.05 151.27
Clustering 38.40 152.22

Re-partitioning 37.70 148.50
IFL = 0.15 Sampling 39.72 154.9

Regionalization 39.02 154.14
Clustering 39.29 154.45

Original 185.41 278.40
Re-partitioning 189.37 285.35

IFL = 0.05 Sampling 196.64 296.07
Regionalization 195.62 294.60

Clustering 195.86 295.10
Re-partitioning 193.25 286.57

Home Sales IFL = 0.1 Sampling 202.91 297.48
Regionalization 200.21 296.49

Clustering 200.64 –296.80
Re-partitioning 198.63 291.07

IFL = 0.15 Sampling 216.85 302.5
Regionalization 213.17 300.38

Clustering 214.12 300.91
Original 76.45 211.37

Re-partitioning 79.36 217.92
IFL = 0.05 Sampling 85.31 233.17

Regionalization 83.01 227.07
Clustering 83.76 227.88

Re-partitioning 79.81 221.43
Earning IFL = 0.1 Sampling 86.59 240.03

Regionalization 83.06 230.73
Clustering 83.62 232.47

Re-partitioning 80.89 224.05
IFL = 0.15 Sampling 88.33 240.85

Regionalization 84.37 233.24
Clustering 85.21 234.26

(d) Support Vector Regression

Dataset MAE RMSE
Original 4.02 19.40

Re-partitioning 4.17 19.61
IFL = 0.05 Sampling 4.49 20.6

Regionalization 4.35 20.54
Clustering 4.38 20.58

Re-partitioning 4.21 19.94
Taxi Trip IFL = 0.1 Sampling 4.56 20.92

Regionalization 4.42 20.79
Clustering 4.42 20.82

Re-partitioning 5.1 20.86
IFL = 0.15 Sampling 5.51 21.97

Regionalization 5.36 21.84
Clustering 5.43 21.89

Original 57.46 185.617
Re-partitioning 59.0 189.44

IFL = 0.05 Sampling 63.16 196.74
Regionalization 61.81 196.08

Clustering 61.98 196.32
Re-partitioning 60.13 193.36

Home Sales IFL = 0.1 Sampling 64.06 203.7
Regionalization 63.17 200.51

Clustering 63.56 201.08
Re-partitioning 61.38 198.69

IFL = 0.15 Sampling 64.11 207.85
Regionalization 63.77 207.23

Clustering 63.90 207.42
Original 8.12 44.81

Re-partitioning 8.23 45.66
IFL = 0.05 Sampling 9.22 49.77

Regionalization 8.65 47.82
Clustering 8.75 48.13

Re-partitioning 8.40 46.33
Earning IFL = 0.1 Sampling 9.41 50.27

Regionalization 8.86 48.97
Clustering 9.05 49.23

Re-partitioning 8.69 48.22
IFL = 0.15 Sampling 9.91 54.0

Regionalization 9.25 50.78
Clustering 9.46 51.66

(e) Random Forest Regression

Dataset MAE RMSE
Original 177.4 203.54

Re-partitioning 185.2 248.75
IFL = 0.05 Sampling 194.65 269.89

Regionalization 190.39 255.59
Clustering 191.18 258.30

Re-partitioning 188.14 253.76
Taxi Trip IFL = 0.1 Sampling 198.31 272.32

Regionalization 193.03 260.24
Clustering 194.25 264.10

Re-partitioning 190.7 258.3
IFL = 0.15 Sampling 197.73 267.26

Regionalization 196.23 265.53
Clustering 196.67 266.82

Original 7.31 11.05
Re-partitioning 7.6 11.47

IFL = 0.05 Sampling 8.22 12.89
Regionalization 7.81 11.8

Clustering 7.89 12.24
Re-partitioning 7.79 11.79

Vehicles IFL = 0.1 Sampling 8.94 13.42
Regionalization 8.02 12.1

Clustering 8.32 12.53
Re-partitioning 8.13 12.03

IFL = 0.15 Sampling 10.38 13.57
Regionalization 8.38 12.37

Clustering 8.65 12.65
Original 124.03 206.87

Re-partitioning 126.14 211.21
IFL = 0.05 Sampling 134.97 226.21

Regionalization 130.05 217.34
Clustering 131.35 219.16

Re-partitioning 128.25 212.66
Earning IFL = 0.1 Sampling 138.64 227.12

Regionalization 136.71 219.89
Clustering 137.09 220.55

Re-partitioning 133.58 216.80
IFL = 0.15 Sampling 144.93 229.59

Regionalization 137.19 227.21
Clustering 140.24 227.60

(f) Spatial Kriging

and training time for both the classification models.
3) Evaluation with Spatial Kriging: Kriging is a geosta-

tistical method to estimate the value of a variable at an
unobserved location from nearby observations based on the
spatial arrangement of the observations. Figures 7f and 8f
show the evaluation results with spatial kriging model. Since
spatial kriging is usually done on a univariate dataset, we train
the spatial kriging model with all univariate datasets. Training
time reduction varies from 48% to 58%, while the reduction
in memory usage varies from 43% to 57% with the 0.05 IFL

threshold. With an IFL threshold of 0.1, the training time and
memory usage are reduced by [57%, 75%] and [52%, 72%],
respectively. Similarly to regression models, we do not observe
significant savings in memory usage and training time for the
IFL threshold 0.15 as compared to smaller thresholds.

4) Evaluation with Spatial Clustering: We evaluate our
framework with spatial clustering on all multivariate and
univariate datasets. Figures 9c and 10c show the clustering
time and memory savings on spatially constrained hierarchical
clustering. For the 0.05 IFL threshold, clustering time and

TABLE III: Weighted F1-score of classification models
Dataset F1

Score
Original 0.94

Re-partitioning 0.93
IFL Sampling 0.85
0.05 Regionalization 0.88

Clustering 0.88
Re-partitioning 0.93

Taxi IFL Sampling 0.86
trip 0.1 Regionalization 0.87

Clustering 0.88
Re-partitioning 0.93

IFL Sampling 0.85
0.15 Regionalization 0.88

Clustering 0.87
Original 0.96

Re-partitioning 0.93
IFL Sampling 0.81
0.05 Regionalization 0.83

Clustering 0.84
Re-partitioning 0.92

Home IFL Sampling 0.78
sales 0.1 Regionalization 0.81

Clustering 0.82
Re-partitioning 0.88

IFL Sampling 0.75
0.15 Regionalization 0.76

Clustering 0.78
Original 0.97

Re-partitioning 0.95
IFL Sampling 0.88
0.05 Regionalization 0.9

Clustering 0.91
Re-partitioning 0.94

Earning IFL Sampling 0.86
0.1 Regionalization 0.88

Clustering 0.89
Re-partitioning 0.91

IFL Sampling 0.82
0.15 Regionalization 0.84

Clustering 0.84

(a) Gradient Boosting

Dataset F1
Score

Original 0.92
Re-partitioning 0.92

IFL Sampling 0.82
0.05 Regionalization 0.88

Clustering 0.88
Re-partitioning 0.92

Taxi IFL Sampling 0.80
trip 0.1 Regionalization 0.87

Clustering 0.88
Re-partitioning 0.91

IFL Sampling 0.79
0.15 Regionalization 0.85

Clustering 0.84
Original 0.93

Re-partitioning 0.9
IFL Sampling 0.8
0.05 Regionalization 0.81

Clustering 0.81
Re-partitioning 0.89

Home IFL Sampling 0.78
sales 0.1 Regionalization 0.77

Clustering 0.80
Re-partitioning 0.88

IFL Sampling 0.74
0.15 Regionalization 0.76

Clustering 0.77
Original 0.75

Re-partitioning 0.73
IFL Sampling 0.58
0.05 Regionalization 0.63

Clustering 0.62
Re-partitioning 0.72

Earning IFL Sampling 0.57
0.1 Regionalization 0.59

Clustering 0.60
Re-partitioning 0.69

IFL Sampling 0.54
0.15 Regionalization 0.57

Clustering 0.59

(b) K Nearest Neighbor

TABLE IV: Comparing correctness of clustering
Dataset Method IFL = 0.05 IFL = 0.1 IFL = 0.15

Re-partitioning 99.48 99.46 99.14
Taxi trip multivariate Sampling 95.71 92.12 88.83

Regionalization 97.39 96.97 96.91
Clustering 97.06 96.80 96.58

Re-partitioning 96.86 96.17 95.37
Home sales multivariate Sampling 91.39 89.74 88.18

Regionalization 93.66 93.16 91.32
Clustering 93.49 92.72 91.54

Re-partitioning 98.33 97.76 97.14
Earnings multivariate Sampling 92.26 91.68 91.19

Regionalization 94.48 93.75 93.17
Clustering 94.74 94.10 93.37

Re-partitioning 99.38 98.73 98.24
Taxi trip univariate Sampling 94.33 90.73 90.09

Regionalization 97.09 96.66 95.88
Clustering 96.92 96.71 96.15

Re-partitioning 97.47 95.93 95.08
Vehicles univariate Sampling 92.29 89.95 87.13

Regionalization 94.91 93.75 92.96
Clustering 94.78 93.56 93.16

Re-partitioning 98.76 98.27 97.81
Earnings univariate Sampling 92.51 91.92 91.38

Regionalization 94.79 94.16 93.40
Clustering 94.96 94.45 93.83

memory usage reduction is in the range [28%, 35%] and [11%,
42%], respectively. Clustering time, memory consumption, and
their reduction rate obtained using re-partititoning are low for
the univariate datasets as compared to the multivariate datasets.

D. Evaluating Prediction and Classification Errors

We evaluate the prediction and classification quality of
trained spatial models in terms of mean absolute error, root
mean square error and weighted F1-score. In the case of
spatial lag and error models, we report the pseudo r-squared
and SE of regression which are common measures for these
models. Prediction errors for all the regression models and
the kriging model have been reported in Table II. We make
two comparisons in this section: i) we measure the percent
increase of prediction error when the re-partitioned dataset is

used to train a model instead of the original dataset and ii) we
compare the prediction errors for the re-partitioned framework
against the baseline techniques.

1) Analyzing the increase in Errors: In this section, we
compare the prediction errors upon the original dataset against
those on the re-partitioned datasets with various IFL thresh-
olds. Our results show that the difference between prediction
error on the original datasets and re-partitioned datasets is
always ≤ 4% for an IFL threshold of 0.05 and ≤ 5% for
the 0.1 IFL threshold. Pseudo r-squared values for 0.05 and
0.1 IFL thresholds are very close to the pseudo r-squared for
the original dataset, indicating the goodness of spatial lag and
error models. Similarly to regression models, spatial kriging
also maintains the difference in the prediction errors below
4% and 5% for the IFL thresholds 0.05 and 0.1, respectively.

On the contrary, differences in standard regression errors
are more than 5% for the 0.15 IFL threshold. Therefore, we
recommend that an IFL threshold of up to 0.1 should be se-
lected so that training time and memory usage can be reduced
considerably, while keeping the difference in prediction error
within 5%. Similarly to spatial lag and error models, other
regression models and spatial kriging also have more than 5%
difference in MAE and RMSE when IFL ≥ 0.15.

Table IV reports the % of cells that are under the same
clusters when clustering is applied to both the original and the
re-partitioned (also sampled and regionalized) grids. Based on
Table IV, we can say that the clustering accuracy is around
99% upon the taxi trip dataset for the 0.05 IFL threshold, and it
is more than 98% for other thresholds. Clustering correctness
varies from 95% to 97.5% on other datasets.

2) Comparing Prediction and Classification Errors With
Baselines: In this section, we compare the prediction and clas-
sification errors for re-partitioned grids with the errors incurred
by applying the baseline techniques. As mentioned before,
note that we use the count of cell-groups obtained from the
re-partitioning framework with a specific IFL threshold as the
target number of samples, regions and clusters for sampling,
regionalization and clustering respectively for a fair compar-
ison. Upon observing the prediction errors, we can state that
the re-partitioned grids obtained from our framework perform
the best, and we outperform the regionalization, clustering,
and sampling techniques by 3% to 14% for all regression
models. It is due to the fact that spatial sampling techniques
cannot capture spatial adjacency, while the regionalization and
clustering techniques fail to maintain low information loss.

In the case of classification models, weighted F1-scores
for the re-partitioned datasets are 5% to 20% higher than
the F1-scores obtained by the baselines. Prediction errors of
spatial kriging model for re-partitioned datasets are 2.5% to
8.5% lower than the datasets reduced by baselines. Similarly
to regression models, sampling performs the worst in the
case of spatial kriging because kriging techniques use spatial
autocorrelation to interpolate the values in the spatial cells.
Clustering correctness of re-partitioning framework is 2%
to 10% better than the baselines. Sampling is agnostic to
spatial contiguity and performs poorer than other baselines

that preserve autocorrelation.

E. Evaluating Homogeneous Re-partitioning

In this empirical study, we estimate the information loss
(IFL) that occurs when we re-partition the input spatial grid
to generate homogeneous cell-groups applying the method
discussed in Section III-D. We report the IFL after running
this approach for the first iteration in Table V, where we merge
the least possible #adjacent rows or columns or both (which
is 2) to arrive at a coarse-grained grid. The results show that
the IFL values are very high (> 0.4), and exceed the largest
possible IFL threshold of 0.15 that we use to evaluate our
re-partitioning framework in the prior sub-sections. Due to
the poor performance shown by homogeneous re-partitioning,
it is clear that we need not run this approach for further
iterations. This is because IFL values will only become worse
in subsequent iterations.

TABLE V: Information loss for homogeneous grid
Dataset Merging 2 rows Merging 2 columns Merging 2 rows & 2 columns

Taxi trip multivariate 0.538 0.497 0.641
Taxi trip univariate 0.428 0.467 0.534

Home sales multivariate 0.484 0.509 0.613
Vehicles univariate 0.416 0.405 0.476

Earnings multivariate 0.504 0.527 0.669
Earnings univariate 0.391 0.435 0.487

V. RELATED WORK

Existing spatial data reduction techniques can be classified
into four categories: data sampling, regionalization, dimen-
sionality reduction, and data reduction by modeling.

1. Data Sampling - As discussed in earlier sections,
sampling is an effective approach to reduce the volume of
large datasets. Guo et al. [9] propose a technique to sample
spatial map data such that sampled data instances maintain
a proximal distance threshold while maximizing a similarity
score. Tabula [10], [44] introduces a sampling technique
allowing user-defined loss function where samples are pre-
materialized. Other spatial sampling techniques include multi-
level sampling [11] and sampling and aggregation [8]. The
limitation of sampling approaches is that they are orthogonal
to the goal of this paper, and they cannot capture the adjacency
among the sample partitions drawn which turns out to be
inapplicable to our target applications.

2. Regionalization - Regionalization clusters a large set of
small polygons into a small set of large regions. Examples
in this category include [13]–[18]. The number of clusters
is given as a parameter, which is significantly smaller than
the total number of polygons. These approaches start with
initializing the regions with random cells and grow each region
later by satisfying user constraints. No existing works applied
these techniques to reduce the training data of spatial ML
models. Our work is closely related to this category, with
the exception that the number of target regions is not pre-
specified. Instead, we expect the user to specify an information
loss (IFL) threshold, which is an intuitive numerical value
between 0 and 1. We utilize this to constrain our re-partitioning
technique to produce a minimal set of target cell-groups, while
not incurring a high loss. We also made the first attempt to

adapt regionalization towards reducing the volume of input
training data for spatial ML models.

3. Feature Selection and Dimensionality Reduction -
Many current dataset reduction approaches concentrate on
eliminating or preserving a subset of the original dataset’s
features. Feature selection approaches have been surveyed
by prior works [45], [46]. On the contrary, dimensionality
reduction techniques project the features of the original dataset
into a new feature space with different dimensionality [24]–
[26]. Although feature selection and dimensionality reduction
cannot be applied towards reducing spatial cells, they can serve
as complementary techniques to reduce the dimensionality of
the feature vectors within the re-partitioned spatial cells in
order to further enhance the reduction in ML model training
time and memory usage.

4. Data Reduction by Modeling - Several data reduction
techniques exploit statistical modeling to reduce the size of a
dataset [47], [48]. They exploit statistical properties of data
blocks to find similar blocks within streaming spatio-temporal
data. 2D-STR [27] introduced a 2-dimensional spatio-temporal
reduction method where spatio-temporal matrix of a dataset is
partitioned into regions of similar instances, and each region is
reduced to a model of its instances. This approach is targeted
towards spatio-temporal traffic data processing tasks and aims
to reduce the processing time by reducing the data volume.
They do not address how to concisely represent the reduced
spatio-temporal dataset for the purpose of feeding it to an
ML model. Our work solves an orthogonal problem where
the training data is not streaming and we exclusively focus
on spatial data and not spatio-temporal data, the extension to
which can be treated as possible future work.

VI. CONCLUSION

In this paper, we propose a machine learning-aware data re-
partitioning framework for spatial datasets. Our proposed re-
partitioning framework reduces the volume of a spatial grid
dataset by reducing the number of cells in the spatial grid,
which further helps in reducing the model training time and
memory usage when the re-partitioned dataset is applied to
train a spatial ML model. To evaluate the effectiveness of
our proposed framework on diverse spatial ML applications,
we perform training and testing of multiple spatial regression,
spatial kriging, classification, and clustering models using both
input datasets and re-partitioned datasets. Our empirical eval-
uations on four real-world datasets validate that our proposed
re-partitioning framework can reduce the training time in the
range of 43% to 81% for kriging, classification, and regression
models with less than 5% difference in prediction error when
the information loss is within a very low threshold (≤ 0.1). Our
framework also outperforms the state-of-the-art baselines by
3% to 14% on regression models, 5% to 20% on classification
models, and 2% to 10% for other spatial models in terms
of prediction and classification errors. In the future, we plan
to improve our work by extending support for categorical
attributes, spatio-temporal datasets, and streaming scenarios.

REFERENCES

[1] I. Sabek and M. F. Mokbel, “Machine learning meets big spatial
data,” Proc. VLDB Endow., vol. 12, no. 12, p. 1982–1985, Aug. 2019.
[Online]. Available: https://doi.org/10.14778/3352063.3352115

[2] S. Shekhar, C.-T. Lu, and P. Zhang, “Detecting graph-based spatial
outliers: Algorithms and applications (a summary of results),” in
Proceedings of the Seventh ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’01. New York,
NY, USA: Association for Computing Machinery, 2001, p. 371–376.
[Online]. Available: https://doi.org/10.1145/502512.502567

[3] R. Frank, M. Ester, and A. Knobbe, “A multi-relational approach
to spatial classification,” in Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
ser. KDD ’09. New York, NY, USA: Association for Computing
Machinery, 2009, p. 309–318. [Online]. Available: https://doi.org/10.1
145/1557019.1557058

[4] F. Qian, Q. He, and J. He, “Mining spatial co-location patterns with
dynamic neighborhood constraint,” in Machine Learning and Knowledge
Discovery in Databases, W. Buntine, M. Grobelnik, D. Mladenić, and
J. Shawe-Taylor, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 238–253.

[5] Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, and K. Keutzer, “Imagenet
training in minutes,” in Proceedings of the 47th International
Conference on Parallel Processing, ser. ICPP 2018. New York, NY,
USA: Association for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3225058.3225069

[6] K. Chowdhury, A. Sharma, and A. D. Chandrasekar, “Evaluating
deep learning in systemml using layer-wise adaptive rate scaling(lars)
optimizer,” CoRR, vol. abs/2102.03018, 2021. [Online]. Available:
https://arxiv.org/abs/2102.03018

[7] “2014-15 home sales in king county, wa,” https://geodacenter.github.io/
data-and-lab/KingCounty-HouseSales2015/, accessed: 2021-02-25.

[8] L. Wang, R. Christensen, F. Li, and K. Yi, “Spatial online sampling
and aggregation,” Proc. VLDB Endow., vol. 9, no. 3, p. 84–95, Nov.
2015. [Online]. Available: https://doi.org/10.14778/2850583.2850584

[9] T. Guo, K. Feng, G. Cong, and Z. Bao, “Efficient selection of
geospatial data on maps for interactive and visualized exploration,”
in Proceedings of the 2018 International Conference on Management
of Data, ser. SIGMOD ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 567–582. [Online]. Available:
https://doi.org/10.1145/3183713.3183738

[10] J. Yu and M. Sarwat, “Turbocharging geospatial visualization dashboards
via a materialized sampling cube approach,” in 2020 IEEE 36th Interna-
tional Conference on Data Engineering (ICDE), 2020, pp. 1165–1176.

[11] E. Maduekwe and W. De Vries, “Random spatial and systematic random
sampling approach to development survey data: Evidence from field
application in malawi,” Sustainability, vol. 11, p. 6899, 12 2019.

[12] Y. Park, M. Cafarella, and B. Mozafari, “Visualization-aware sampling
for very large databases,” in 2016 IEEE 32nd International Conference
on Data Engineering (ICDE), 2016, pp. 755–766.

[13] S. Biswas, F. Chen, Z. Chen, C.-T. Lu, and N. Ramakrishnan,
“Incorporating domain knowledge into memetic algorithms for
solving spatial optimization problems,” in Proceedings of the 28th
International Conference on Advances in Geographic Information
Systems, ser. SIGSPATIAL ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 25–35. [Online]. Available:
https://doi.org/10.1145/3397536.3422265

[14] S. Biswas, F. Chen, Z. Chen, A. Sistrunk, N. Self, C.-T. Lu,
and N. Ramakrishnan, “Regal: A regionalization framework for
school boundaries,” in Proceedings of the 27th ACM SIGSPATIAL
International Conference on Advances in Geographic Information
Systems, ser. SIGSPATIAL ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 544–547. [Online]. Available:
https://doi.org/10.1145/3347146.3359377

[15] K. Kim, “Spatial contiguity-constrained hierarchical clustering for traffic
prediction in bike sharing systems,” IEEE Transactions on Intelligent
Transportation Systems, pp. 1–11, 2021.

[16] W. Li, R. L. Church, and M. F. Goodchild, “The p-compact-regions
problem,” Geographical Analysis, vol. 46, no. 3, pp. 250–273, 2014.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/ge
an.12038

[17] J. C. Duque, R. L. Church, and R. S. Middleton, “The p-regions
problem,” Geographical Analysis, vol. 43, no. 1, pp. 104–126, 2011.

[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.15
38-4632.2010.00810.x

[18] J. C. Duque, R. Ramos, and J. Suriñach, “Supervised regionalization
methods: A survey,” International Regional Science Review, vol. 30,
no. 3, pp. 195–220, 2007. [Online]. Available: https://doi.org/10.1177/
0160017607301605

[19] Z. Chen, P. Cheng, L. Chen, X. Lin, and C. Shahabi, “Fair
task assignment in spatial crowdsourcing,” Proc. VLDB Endow.,
vol. 13, no. 12, p. 2479–2492, Jul. 2020. [Online]. Available:
https://doi.org/10.14778/3407790.3407839

[20] R. Benedetti, F. Piersimoni, G. Pignataro, and F. Vidoli, “Identification
of spatially constrained homogeneous clusters of covid-19 transmission
in italy,” Regional Science Policy & Practice, vol. 12, no. 6, pp.
1169–1187, 2020. [Online]. Available: https://rsaiconnect.onlinelibrary.
wiley.com/doi/abs/10.1111/rsp3.12371

[21] M. P. Armstrong, G. Rushton, R. Honey, B. T. Dalziel, P. Lolonis,
S. De, and P. J. Densham, “Decision support for regionalization:
A spatial decision support system for regionalizing service delivery
systems,” Computers, Environment and Urban Systems, vol. 15, no. 1,
pp. 37–53, 1991. [Online]. Available: https://www.sciencedirect.com/sc
ience/article/pii/019897159190044E

[22] K. Spence Cheruvelil, P. Soranno, M. Bremigan, T. Wagner, and S. Mar-
tin, “Grouping lakes for water quality assessment and monitoring: The
roles of regionalization and spatial scale,” Environmental management,
vol. 41, pp. 425–40, 04 2008.

[23] J. C. Duque, R. Ramos, and J. Suriñach, “Supervised regionalization
methods: A survey,” International Regional Science Review, vol. 30,
no. 3, pp. 195–220, 2007. [Online]. Available: https://doi.org/10.1177/
0160017607301605

[24] K. P. F.R.S., “Liii. on lines and planes of closest fit to systems of
points in space,” The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, vol. 2, no. 11, pp. 559–572, 1901.
[Online]. Available: https://doi.org/10.1080/14786440109462720

[25] A. Martinez and A. Kak, “Pca versus lda,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 23, no. 2, pp. 228–233, 2001.

[26] J. Tenenbaum, V. Silva, and J. Langford, “A global geometric framework
for nonlinear dimensionality reduction,” Science (New York, N.Y.), vol.
290, pp. 2319–23, 01 2001.

[27] L. Steadman, N. Griffiths, S. Jarvis, S. McRobbie, and C. Wallbank,
“2d-str: Reducing spatio-temporal traffic datasets by partitioning and
modelling,” 01 2019, pp. 41–52.

[28] P. A. P. MORAN, “NOTES ON CONTINUOUS STOCHASTIC
PHENOMENA,” Biometrika, vol. 37, no. 1-2, pp. 17–23, 06 1950.
[Online]. Available: https://doi.org/10.1093/biomet/37.1-2.17

[29] R. C. Geary, “The contiguity ratio and statistical mapping,” The
Incorporated Statistician, vol. 5, no. 3, pp. 115–141, 1954. [Online].
Available: https://rss.onlinelibrary.wiley.com/doi/abs/10.2307/2986645

[30] S. J. Rey and L. Anselin, PySAL: A Python Library of Spatial
Analytical Methods. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 175–193. [Online]. Available: https://doi.org/10.1007/978-3-
642-03647-7 11

[31] S. Moliński, “Pyinterpolate: Spatial interpolation in python for point
measurements and aggregated datasets,” Journal of Open Source
Software, vol. 7, no. 70, p. 2869, 2022. [Online]. Available:
https://doi.org/10.21105/joss.02869

[32] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of machine learning
research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[33] “Spatial data re-partitioning,” https://github.com/kanchanchy/spatial-re
partitioning-ml.

[34] “Standard error of the regression vs. r-squared,” https://statisticsbyji
m.com/regression/standard-error-regression-vs-r-squared/, accessed:
2021-04-22.

[35] “What are pseudo r-squareds?” https://stats.idre.ucla.edu/other/mult-p
kg/faq/general/faq-what-are-pseudo-r-squareds/, accessed: 2021-04-25.

[36] “Micro, macro & weighted averages of f1 score, clearly explained,”
https://towardsdatascience.com/micro-macro-weighted-averages-of-f1-s
core-clearly-explained-b603420b292f, accessed: 2022-02-08.

[37] “Tlc trip record data,” https://www1.nyc.gov/site/tlc/about/tlc-trip-recor
d-data.page, accessed: 2021-01-20.

[38] “Abandoned cars in chicago,” https://geodacenter.github.io/data-and-lab
/1-source-and-description/, accessed: 2021-03-05.

[39] “Block-level earnings in nyc (2002-14),” https://geodacenter.github.io/
data-and-lab/LEHD Data/, accessed: 2022-02-05.

[40] “Dealing with missing data,” https://www.esri.com/about/newsroom/ar
cuser/dealing-with-missing-data/, accessed: 2022-02-04.

[41] Y. Gong, Z. Li, J. Zhang, W. Liu, B. Chen, and X. Dong,
“A spatial missing value imputation method for multi-view urban
statistical data,” in Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI-20, C. Bessiere, Ed.
International Joint Conferences on Artificial Intelligence Organization,
7 2020, pp. 1310–1316, main track. [Online]. Available: https:
//doi.org/10.24963/ijcai.2020/182

[42] S. R. Kuppannagari, Y. Fu, C. M. Chueng, and V. K. Prasanna,
“Spatio-temporal missing data imputation for smart power grids,” in
Proceedings of the Twelfth ACM International Conference on Future
Energy Systems, ser. e-Energy ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 458–465. [Online]. Available:
https://doi.org/10.1145/3447555.3466586

[43] P. Amitha, V. Binu, and B. Seena, “Estimation of missing
values in aggregate level spatial data,” Clinical Epidemiology and
Global Health, vol. 9, pp. 304–309, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2213398420302232

[44] J. Yu, K. Chowdhury, and M. Sarwat, “Tabula in action: A sampling
middleware for interactive geospatial visualization dashboards,” Proc.
VLDB Endow., vol. 13, no. 12, p. 2925–2928, Aug. 2020. [Online].
Available: https://doi.org/10.14778/3415478.3415510

[45] B. Xue, M. Zhang, W. N. Browne, and X. Yao, “A survey on evolutionary
computation approaches to feature selection,” IEEE Transactions on
Evolutionary Computation, vol. 20, no. 4, pp. 606–626, 2016.

[46] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang,
and H. Liu, “Feature selection: A data perspective,” ACM Comput.
Surv., vol. 50, no. 6, Dec. 2017. [Online]. Available: https:
//doi.org/10.1145/3136625

[47] K. Wu, D. Lee, A. Sim, and J. Choi, “Statistical data reduction for
streaming data,” in 2017 New York Scientific Data Summit (NYSDS),
2017, pp. 1–6.

[48] S. Lakshminarasimhan, J. Jenkins, I. Arkatkar, Z. Gong, H. Kolla,
S.-H. Ku, S. Ethier, J. Chen, C. S. Chang, S. Klasky, R. Latham,
R. Ross, and N. F. Samatova, “Isabela-qa: Query-driven analytics
with isabela-compressed extreme-scale scientific data,” in Proceedings
of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’11. New York, NY,
USA: Association for Computing Machinery, 2011. [Online]. Available:
https://doi.org/10.1145/2063384.2063425

