
Recurrent Neural Networks for Dynamic User Intent
Prediction in Human-Database Interaction

Vamsi Meduri
Arizona State University

vmeduri@asu.edu

Kanchan Chowdhury
Arizona State University
kchowdh1@asu.edu

Mohamed Sarwat
Arizona State University

msarwat@asu.edu

ABSTRACT
Prediction of human intent during a user interaction session with
the database received a significant amount of attention in the re-
cent past [1, 8]. State-of-the-art intent detection approaches such
as [5] insist that the human intent is dynamic and is constantly
changing throughout the user session. While the usage of classi-
fiers like SVMs and decision trees have been proposed to capture
static user intent [2], such models become ineffective in predict-
ing dynamic or ever-changing human intent. Recurrent Neural
Networks (RNNs) are powerful temporal predictors and have
recently been prominent in the database research community
for tasks such as entity matching [3, 6]. In this work, we discuss
the application of RNNs to the problem of dynamic user intent
prediction during a human-database interaction. We propose two
variants of SQL-specific embedding vectors for RNNs. We also
propose active learninд strategies for RNNs which consume a
fraction of the held-out training data to produce competitive
prediction quality as full training or supervised learninд. Our ex-
periments on real user sessions upon the NYCTaxiTrip dataset [9]
evaluate the effectiveness of vanilla, LSTM and GRU based RNNs.

1 INTRODUCTION
Prediction of user intent during a Human-Database Interaction
(HDI) session helps prefetching the results of the anticipated
queries [4] thus making the interaction seamless. Existing works
such as [1, 2] define the user intent as the last (target) query
asked by a user in an interaction session and the prediction
of user intent as a binary classification problem. The test data
at hand is classified as interesting or not by using a decision
tree or a Support Vector Machine (SVM) based on the training
the classifier has undergone. The positive class predictions are
evaluated against the results of the target SQL query held as
ground truth. This line of work assumes that the user intent is
static, contrary to which [5] emphasizes that the user can refine
and adapt her needs constantly until the termination of an HDI
session i.e., the target query changes continuously. Capturing
dynamic multi-user intent using [1, 2] requires a binary classifier
for each user session. Instead, we can model dynamic intent
discovery as a temporal prediction task using a single Recurrent
Neural Network (RNN) for all the user sessions because of its
ability to train on and predict several sequences of data.

For a query qui issued by the user at timestep i , we not only
retrieve the results of qui but also predict the intent vector of the
subsequent query at timestep i + 1. We use RNN as the intent
prediction middleware between the user and the database as
illustrated in Figure 1. A prior embedding layer can convert
raw text either into real-valued embeddings or one-hot vectors or
words in avocabulary which are fed to the RNNs as intent vectors.

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1: Intent Prediction Pipeline using RNNs

The performance of an RNN is dependent on the granularity
at which these embeddings and the corresponding vocabulary
are created. For instance, either an entire SQL query or each
distinct substring or character in the query can be considered
as a word in the vocabulary. In the latter case, external libraries
such as word2vec (https://code.google.com/archive/p/word2vec/)
or GloVe (https://nlp.stanford.edu/projects/glove/) can be used
to borrow pre-trained real-valued embeddings [6].

We create two variants of SQL-specific binary embeddings for
dynamic intent vector representation customized to relational
databases rather than relying on external libraries which are SQL-
agnostic. In the first variant of query embedding, we use a one-hot
vector which is a bitmap of 1s and 0s to represent each query
intent. It only has a single dimension set to 1 that corresponds
to a specific query among the collective set of queries issued
by the users until a given point of time. The second variant of
operator-based embedding breaks down a SQL query into several
smaller bitmaps each corresponding to a distinct family of SQL
operators. A concatenation of all the operator-specific bitmaps
produces an operator embedding as the user intent for that query.

RNNs are known to consume a lot of training data and time.
To reduce the amount of training data, we use active learning
on RNN to empirically test if it can make effective predictions
with limited user sessions. Active learning selectively includes
ambiдuous (hard-to-classify) examples into the training data and
incrementally refines the classifier based on the additional train-
ing data. Our approach differs from active learning for static
intent in [2] as we select query sequences that is more scalable
than labeling tuples. To minimize the training time and enhance
interactivity, we propose using an incrementally trained RNN.
We present our results on 139 sessions we collected from real
user interactions on the NYCTaxiTrip [9] dataset. The remaining
paper is organized as follows: we first present the details of the
experimental dataset and the construction of the embedding vec-
tors followed by the application of supervised learning and active
learning on RNN for dynamic intent prediction. We conclude the
paper with a discussion on the experimental results.

2 DATASET AND SYSTEM OVERVIEW
We collected 139 user sessions from 30 real world users with
4 to 5 average sessions per user. Each of them interacted with

Short Paper

Series ISSN: 2367-2005 654 10.5441/002/edbt.2019.79

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2019.79

a sample of 100,000 trips loaded from a total of 10M taxi trips
that span over 5 weeks in June and July 2016. We used the vi-
sual interface of Tableau [7] connected to the database engine
of PostgreSQL 9.5.10. The reason for sampling is to increase the
interactivity between the user and the database without overload-
ing the Tableau interface. The visual interactions are translated
into SQL queries and stored in logs by Tableau. We obtained a
total of 1958 SQL queries with 1190 distinct queries from the user
interactions. Our offline vocabulary creation step ensures that
the embedding vectors of all the queries have the same pre-fixed
dimensionality. We do not have to handle "UNK"(unknown) to-
kens as RNNs conventionally do for out-of-vocabulary strings,
because of the offline step.

Query Embedding: Query-based intent uses the actual query
for intent representation. Each query is thus assigned a specific
dimension within the entire vocabulary space of 1190 distinct
SQL queries in the dataset. A bitmap of 1190 bits is created for
each query of which a single bit is set to 1 specific to the query.

Operator Embedding: The NYCTaxiTrips dataset is stored
as a single table and hence each SQL query intent vector is a
composite bit vector of all possible operators allowed over a
single relation and can be written asvec(quAддr) = πvec Aддrvec
σvec GROUP BYvec ORDER BYvec HAVINGvec LIMITvec . Each
query vector vec(quAддr) is a concatenation of bit vectors for
operators such as PROJECT, AGGREGATE, GROUP BY, ORDER
BY, HAVING and LIMIT. Every single operator out of these six has
a dimensionality equal to the number of attributes |Attr | in the
database schema (indicating the columns that the operator can
be associated with) except AGGREGATE and LIMIT. Aддrvec is
a concatenation of five most common aggregate operators - AVG,
MIN, MAX, SUM and COUNT and thus has a dimensionality of
|Attr | ∗ 5 bits. LIMIT operator contributes only to a single bit in
the operator vector as it is not associated with any attribute and
is more like a Boolean recording its presence in the query. The
total dimensionality of an operator embedding bitmap is thus
|Attr |x10+1 which is 18x10+1=181 for the NYC taxi trip dataset.

Operator Operator sub-vector #Dimensions
πvec 000000000000100000 #Columns = 18

Aддrvec 0...0111111111111111111 #Columns x 5 = 90
σvec 0000..0 #Columns = 18

GROUP BYvec 000000000000100000 #Columns = 18
ORDER BYvec 0000..0 #Columns = 18
HAVINGvec 0000..0 #Columns = 18
LIMITvec 0 1

The above table lists the operator (sub-)vectors for each ex-
pected category of SQL operators for the example query qui+1
from Figure 1, quAддr : SELECT COUNT(*), taxi_fare FROM
nyc_yellow_tripdata GROUP BY taxi_fare. Let taxi_fare be the
13th attribute among the list of 18 possible attributes. We can
see the corresponding bit position set to 1 in the 18-bit operator
sub-vector for the projection and group by operator while setting
all the attributes for the count operator to 1.

2.1 Supervised Learning
In this section, we describe how RNNs are trained and tested for
dynamic intent prediction. We use Keras API (https://keras.io/)
with TensorFlow library (https://www.tensorflow.org/) for RNNs.
Figure 2 illustrates RNN for two consecutive timesteps Ti and
Ti+1 in intent prediction. We use a “many-to-one” sequential
RNN with an input layer, a hidden layer and an output layer. The
input layer is fed with the sequence of query/operator embedding

Figure 2: Recurrent Neural Network for Intent Prediction

vectors until the current timestep in the session to get a temporal
prediction of the intent for the next timestep. The output layer
emits a probability vector with same dimensionality as the intent
vector. The value of each dimension indicates the probability of
that dimension being a 1. For example, in Figure 2, the output
vector < 0.6, 0.4, 0.01, 0.01, 0.9 > at Ti denotes the probabilities
of each of its five dimensions being 1.

During the training phase, the predicted probabilistic output
vector is compared to the target query which is the successor
query from the next timestep or the expected intent vector output
(of 11001 at Ti in the figure) using a loss function. The hidden
layer weights (wxh ,whh ,why) are updated using backpropaga-
tion either by fitting the model simultaneously on the sequences
across all the timesteps so far (f ully trained) or updating the
model obtained thus far by fitting it only on the latest sequence
(incrementally trained). We limit the number of learning epochs
to 10 during training for interactivity. We append the target vec-
tor of timestep Ti to the session sequence as input to the RNN
at the subsequent timestep Ti+1. We empirically choose sigmoid
activation function for hidden layer and binary cross entropy
as the loss function at the output layer. During the test phase,
instead of predicting the most likely intent vector, we predict the
top-K candidate output intent vectors having the highest cosine
similarity to the probabilistic output vector. These top-K vectors
are picked from the historical sessions that the RNN has been
trained on, and this ensures that arbitrary bitmaps which may
not correspond to a meaningful SQL query are not predicted.

2.2 Active Learning
Active learning can be applied to RNN to test if it can perform
well with limited training data. Instead of learning the RNN
upon all the training session queries, the training set can be
divided into two parts - session query sequences which are made
available to the RNN, and query sequences held out from the
RNN. By training the RNN upon the available query sequences
and selecting informative sequences from the held-out data for
inclusion into the training set, the RNN is incrementally refined
to verify if it achieves high F1-scores on the test set without
exhausting the entire training set. It should be noted that by
query qui , we refer to its intent vector throughout this section.

For a given user session with queries qu1, qu2 and qu3, the tem-
poral sequences constructed are qu1 → qu2 and qu1,qu2 → qu3
as shown in Figure 3. A held-out session means that the an-
tecedent (e.g.,qu1,qu2 inqu1,qu2 → qu3) of a temporal sequence
dependency is available while keeping the consequent (e.g, qu3
in qu1,qu2 → qu3) invisible. Thus, the trained RNN is supposed
to predict the consequent of each temporal dependency given its

655

Algorithm 1: Active Learning for intent prediction
input :T rA : Available training set of query sequences

T rH : Held-out training set of query sequences
T est : Test set of query sequences
L: learning algorithm for a classifier

output :C∗: An optimal temporal predictor of query intents
qupredicted : Test query successors predicted by C∗

1 i ← 0
2 while {T rH } , ϕ do // stopping criterion
3 Ci ←learnClassifier(L, T rA)
4 seqambiд ← pickAmbiguousQuerySequence(L,T rH)
5 seqlabeled ← obtainSuccessors(seqambiд)
6 T rH ← T rH − seqlabeled
7 T rA ← seqlabeled ∪T rA
8 qupredicted ← predictSuccessors(T est, Ci)
9 T estF 1 ← computeF1(T est, qupredicted)

10 i ← i + 1
11 C∗ ← Ci−1
12 return C∗, qupredicted

antecedent. Among all such held-out sequences, if the RNN finds
a particular sequence to be the hardest to predict the successor
for, it is deemed to be an ambiguous sequence for RNN. The
consequent or the successor query of that particular temporal
sequence is made available to the RNN and is included into the
available training set. In Figure 3, qu11,qu12, ...,qu20 → qu21 is
the hardest held-out temporal sequence and hence, it is included
into the training set.

Figure 3: Active learning for RNNs

Algorithm 1 describes the active learning based intent predic-
tion algorithm using RNN. TrA and TrH are the available and
held-out training datasets. In each active learning iteration, the
most ambiguous query sequence is picked from TrH for which
the successor query is the hardest to predict and the correspond-
ing successor query is made available to RNN (lines 4 and 5). The
query sequence is removed out ofTrH and is added toTrA (lines
6 and 7). At the end of each iteration, the RNN learned thus far
is evaluated on the fold test data until the held-out training set
is exhausted. The purpose of using active learning algorithm is
to verify if all the training set needs to be completely exhausted
during learning to achieve a significantly high enough test F-
measure. While ambiguous sequence selection is time consum-
ing, if it helps active learning reach an early convergence to high
F-measures, it is a trade-off worth considering.

2.2.1 Ambiguous Example Selection Strategy (Minimax). We
have described in section 2.1 that the output layer of the RNN
emits a probability vector. We compute the cosine similarity be-
tween the probability vector and the intent vectors of all the

historical session queries that the RNN has learned from until
then, and select the top-K intent vectors with the highest cosine
similarity as the predicted intents. Hence, we can use the value
of the maximum cosine similarity as the confidence measure
and the inverse of the confidence value denotes the ambiguity.
Among several temporal held-out sequences seq1, seq2, ..., seqn ,
the one for which predicting the successor query is the hardest
is inferred based on the value of the highest cosine similarity
between the weight vector and the historical intent vectors. If
the corresponding values of the highest cosine similarities are
maxSim1,maxSim2, ...,maxSimn , the most ambiguous query se-
quence is seqi if i=arд minni=1 {maxSimi }, i.e., it has the least
maximum cosine similarity (minimax) among all the sequences.

3 EXPERIMENTS
All our experiments were conducted on a Mac machine with a 4-
core 2.8 GHz Intel Core i5 processor, 16GB RAM and 1.02 TB hard
disk. Our experiments for supervised learning were conducted
on queries arriving in an interleaved order from concurrent user
sessions. Active learning experiments were conducted on 10-fold
splits of the data into 10 different training and test set pairs with
90% and 10% of the user session queries respectively. We compute
the precision and recall as follows:
Precision = #{PredDimi=1∩ActualDimi=1}

#{PredDimi=1}
Recall = #{PredDimi=1∩ActualDimi=1}

#{ActualDimi=1}
Each dimension PredDimi in the predicted intent vector is com-
pared to the corresponding dimension ActualDimi in the actual
vector, and the hits and misses are measured based on the fraction
of 1s predicted accurately. We report F1-scores in our results.

Concurrent User Sessions: The queries arrive in batches of
10 and hence the 1958 queries from the NYCTaxiTrip dataset are
divided across 196 learning episodes. While the RNN gets up-
dated at the end of each learning episode with additional training
data obtained from the queries during the episode, it is tested
throughout the episode with the arrival of new query. For each
new query, its embedding (query or operator) vector is fed to the
RNN, which predicts the top-K intent vectors for the next query.
K is set to 3 and we report the maximum F-measure among the
top-3 predictions by averaging it across all the queries in each
episode. Response time is the sum of the intent vector creation
and execution times for the current query added to the intent
vector prediction time for the next query. It is heavily dominated
by the RNN prediction time which also includes its cumulative
training time based on all the queries seen thus far. For incremen-
tally trained vanilla (simple backpropagation) RNN, the training
time depends only on the batch of queries from the latest episode.

LSTM (Long Short Term Memory) and GRU (Gated Recurrent
Unit) perform same as vanilla RNN on the operator embedding
intent vector (Figure 5) but GRUs perform slightly better than
LSTM and vanilla on query embedding (Figure 4) vectors. The
reason for this is that the average user session length is ≈18
queries per session which is not lengthy enough for advanced
RNN variants to exploit the long short term dependencies. On
an average, vanilla RNN seems to give competitive F-measures
while also consuming lesser response time than LSTM and GRU
(Figure 6). Incrementally trained RNN sacrifices test F-measures
on query embedding but produces comparable quality as fully
trained RNNs on operator embedding while incurring very low
response times. Time charts on query embedding demonstrate
similar patterns as operator embedding for both supervised and
active learning which is why we omitted them for brevity.

656

Figure 4: Concurrent Sessions (Query)
Figure 5: Concurrent Sessions (Opera-
tor) Figure 6: Response Times (Operator)

Figure 7: Active Learning (Query) Figure 8: Active Learning (Operator) Figure 9: Selection Times (Operator)

A general observation is that operator embedding is more
expressive and produces better F-measures than query embed-
ding because predicting SQL operators in a query is easier than
predicting the query in its entirety. We can also notice that the
initial queries in concurrent sessions are easier to predict than
the later ones. In the real world sessions we collected, each user
arrives at a distinct goal by the end of the exploratory session.
The first few queries may be similar across users, but each ses-
sion becomes specialized with unique queries towards the end,
thus inducing little overlap across sessions. This in turn makes
workload prediction harder as the sessions progress concurrently.

Active Learning: Our 10-fold active learning experiments
were upon the fully trained vanilla version of RNN using stan-
dard backpropagation algorithm. There were ≈1648 examples
(temporal query sequence dependencies) in the training set and
≈190 test examples. We started with a seed available training
set of 30 randomly chosen training examples and 1618 held-out
training examples. We selected 200 examples in each iteration
from the hold-out set and added them to the available set. We
plot the average test F-measures over all the test sessions across
10 folds at each active learning iteration in Figures 7 and 8.

We compared the minimax example selection strategy de-
scribed in section 2.2.1 with random selection. Our observations
show that random strategy performs competitively to minimax
on operator embedding as shown in Figure 8 and achieves earlier
convergence to the eventual F-measure in the 2nd iteration with
230 examples (14% training data). Minimax achieves slower con-
vergence by iteration 3 with 430 examples and 26% training on
operator embedding. Examples chosen in an iteration are used for
training in the next iteration i.e., #training examples in iteration
i = 30 + 200 x (i-1). Figure 7 shows that both strategies perform
similarly on query embedding. A major drawback of using query
embedding for active learning is the non-monotonic behavior
with increasing iterations. This is due to the heavy sparsity in
query embedding vectors (1 bit set out of 1190 dimensions) and
fitting RNNs to more training points does not necessarily yield
higher test F-measures. Minimax strategy incurs more example

selection time than random selection (Figure 9) because of the ex-
pensive prediction done over the hold-out set which shrinks with
increasing iterations thus also decreasing the selection times.

4 CONCLUSION
In this paper, we proposed the application of RNNs for dynamic
intent prediction and two SQL specific embedding techniques for
intent vector creation. Our experiments show that operator em-
bedding is more effective than query embedding and that vanilla
RNNs perform better than LSTMs or GRUs for user sessions
of moderate length (#queries). We also show that an incremen-
tally updated vanilla RNN model achieves substantially lesser
response times than fully trained RNN models while making
little to no sacrifice in prediction quality. Our active learning ex-
periments show that random selection strategy achieves earlier
convergence to competitive test F-measures as full training with
just 14% of the training examples on operator embedding and
lesser example selection time than minimax strategy.

REFERENCES
[1] Kyriaki Dimitriadou, Olga Papaemmanouil, and Yanlei Diao. 2014. Explore-

by-example: An Automatic Query Steering Framework for Interactive Data
Exploration. In SIGMOD. 517–528.

[2] Kyriaki Dimitriadou, Olga Papaemmanouil, and Yanlei Diao. 2016. AIDE: An
Active Learning-Based Approach for Interactive Data Exploration. IEEE TKDE
28, 11 (2016), 2842–2856.

[3] Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq Joty, Mourad
Ouzzani, and Nan Tang. 2018. Distributed Representations of Tuples for Entity
Resolution. Proc. VLDB Endow. 11, 11 (July 2018), 1454–1467.

[4] Niranjan Kamat, Prasanth Jayachandran, Karthik Tunga, and Arnab Nandi.
2014. Distributed and interactive cube exploration. In ICDE. 472–483.

[5] Ben McCamish, Vahid Ghadakchi, Arash Termehchy, Behrouz Touri, and
Liang Huang. 2018. The Data Interaction Game. In SIGMOD. 83–98.

[6] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon
Park, Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra.
2018. Deep Learning for Entity Matching: A Design Space Exploration. In
SIGMOD. 19–34.

[7] Dan Murray. 2013. Tableau Your Data!: Fast and Easy Visual Analysis with
Tableau Software (1st ed.). Wiley Publishing.

[8] Mohamed Sarwat, Raha Moraffah, Mohamed F. Mokbel, and Jamed L. Avery.
2017. Database System Support for Personalized Recommendation Applica-
tions. In ICDE. 1320–1331.

[9] Taxi and Limousine Commission. 2016. NYC Taxi Trip Dataset. {http://www.
nyc.gov/html/tlc/html/technology/raw_data.shtml}. (2016).

657

	Recurrent Neural Networks for Dynamic User Intent Prediction in Human-Database InteractionVenkata Vamsikrishna Meduri, Kanchan Chowdhury, Mohamed Sarwat

