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Abstract

In this paper, we revisit the problem of query optimiza-
tion in relational DBMS. We propose a scheme to re-
duce the search space of Dynamic Programming based
on reuse of query plans among similar subqueries. The
method generates the cover set of similar subgraph-
s present in the query graph and allows their corre-
sponding subqueries to share query plans among them-
selves in the search space. Numerous variants to this
scheme have been developed for enhanced memory ef-
ficiency. Our implementation and experimental study
in PostgreSQL show that one of the schemes is bet-
ter suited to improve the performance of (Iterative)
Dynamic Programming.

1 Introduction

Dynamic Programming(DP) generates an optimal
plan for a query. However, for queries with large num-
ber of tables and/or clauses (predicates), it is infeasi-
ble for Dynamic Programming to optimize them as the
query optimizer easily runs out of memory in such cas-
es. Even for queries that are seemingly simple (with
few relations and predicates), the search space can be
large.

As an example, let us consider two versions of a
4-table star query.
Q1: SELECT COUNT(*) FROM emp, sal, dept,
mngr WHERE emp.sal_id = sal.sal_id AND
emp.dept_id = dept.dept_id AND emp.mngr_id
= mngr.mngr_id;

Q2: SELECT COUNT(*) FROM emp, sal, dept,
mngr WHERE emp.emp_id = sal.emp_id AND
emp.emp_id = dept.emp_id AND emp.emp_id =
mngr.emp-id;

In query Q1, the hub table emp uses a unique (sepa-
rate) column to join with each of its neighboring tables
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Table 1: 4-predicate star queries with different join
columns run on PostgreSQL optimizer

Query DP Lattice:
LEVEL 2: NUM OF QUERY PLANS = 3
Q1 LEVEL 3: NUM OF QUERY PLANS = 6
LEVEL 4: NUM OF QUERY PLANS = 3
LEVEL 2: NUM OF QUERY PLANS = 6
Q2 LEVEL 3: NUM OF QUERY PLANS = 12
LEVEL 4: NUM OF QUERY PLANS =7

sal, dept and mngr. For instance, emp and sal join
on the column sal_id whereas emp and dept join on a
separate column dept_id. In other words, the prima-
ry key of a table is never multi-referenced (assuming
that all the predicates follow Primary key foreign key
relationships). Whereas in query Q2, emp joins with
sal, dept and mngr on the same column emp_id. We
can see from Table 1 that the number of query plans
(as generated by PostgreSQL 8.3.7 optimizer) at each
DP lattice level is higher in the case of query Q2 com-
pared to Q1. This happens because the optimizer ap-
plies the transitive property using emp_id and infers
new relationships among the tables. emp and sal join
on column emp_id, sal and dept also join on emp_id,
so transitively an inference is made that emp and dept
join on emp_id, thereby inferring predicates which lead
to more subplans.

To illustrate the inference of predicates, in Figure
1, the sub query plans for level “2” in the DP
lattice are enumerated for Q2 and the predicates
which have been inferred from transitive property
are depicted in dotted lines. It should be noted that
this kind of inference happens at further lattice levels
as well for Q2. In the TPC-H schema, the column
“NATION_KEY” belonging to the table NATION is
referenced by tables SUPPLIER and CUSTOMER.
Similarly in the schema of TPC-E, the primary key
S_SYMB is referenced by the tables LAST_TRADE,
TRADE_REQUEST and TRADE. Query Q5 in
TPC-H benchmark is being listed below. We can
see in italicized predicates, how “s_nationkey” is
being multi-referenced. Hence, even a query with a
modest number of relations can get complex because
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Figure 1: Inferred predicates for a star query based on
multi-referenced join column.

of induced density from inferred predicates.

select n_name, sum(l_extendedprice * (1 - l_discount)) as

revenue from customer, orders, lineitem, supplier, nation, region
where c_custkey = o_custkey and l_orderkey = o_orderkey and
1_suppkey = s_suppkey and

c_nationkey = s_nationkey and s_nationkey = n_nationkey

and n_regionkey = r_regionkey and

rname = ’[REGION]’ and o_orderdate >= date ’[DATE]’ and
o_orderdate < date ’[DATE]’ + interval ’1’ year group by

n._name order by revenue desc;

In this paper, we revisit the problem of optimiz-
ing queries. Instead of fully generating the exponen-
tial search space, we aim at generating a part of the
search space and reusing it for the remaining fraction,
thus bringing about computational and memory sav-
ings, and getting a high quality query plan close to
optimality. Our principle idea is to reduce the size of
the set of sub plans Plans; for each level “i” in the DP
lattice through sub plan reuse. This needs the detec-
tion of similar sub queries which in turn requires the
identification of similar sub graphs in the query graph
(query graph is a way of representing the query as a
graph with relations being nodes and predicates be-
ing the edges between them). Hence, the problem has
been converted to a graph problem where we need to
discover sub graph isomorphism internally, i.e. within
a large graph. The collection of sets of similar sub-
graphs from all levels in the DP lattice is termed as
the cover set of similar subgraphs. Once the cover set
of subgraphs is generated, construction of query plans
for each level in the DP lattice begins and because of
exhaustive re-use of sub query plans among the similar
subqueries identified by similar subgraphs present in
the cover set, memory savings can be achieved. These
memory savings enable our scheme to push query opti-
mization to the next level in the DP lattice. It should
be noted that the generation of the cover set of sub-
graphs is memory intensive and computationally ex-
pensive. Hence we optimize the cover set generation.

Figure 2 gives a pictorial representation of our scheme
after the identification of similar subqueries. Similar
subquery sets are fed to the DP lattice at each lev-
el. In the figure, during plan generation for level 3,
the optimizer identifies from the similar subquery set
that (1,2,3) is similar to (4,5,6) and hence the least
cost plan of (1,2,3) is reused for (4,5,6). The plan for
(4,5,6) is still constructed but in a light weight manner
by imitating the join order, join methods and index-
ing decisions at join node and scan node respectively,
thus bringing upon computation savings by avoiding
the conventional method of plan generation. Memo-
ry savings are brought about since the plans for the
various join orders of (4,5,6) are not being generated.
So our scheme benefits from a mixture of CPU and
memory savings.

Similar subquery sets for
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for level 3 —
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Figure 2: Search space generation in Dynamic pro-
gramming lattice through sub-query plan reuse.

We propose a memory-efficient scheme for gener-
ating similar subqueries and the query plans at each
level in the DP lattice. In cases where DP runs out
of memory before generating query plans at a partic-
ular level, our scheme can perform better because of
memory savings. However the savings are significant
in the case of Iterative Dynamic Programming(IDP).
In our experiments, we will show the memory savings
on sparsely and densely connected queries with our
scheme embedded in IDP. Intuitively it can be inferred
that dense queries benefit from our scheme because
the more dense the queries are, the more the predi-
cates are and hence the sub query reuse is also high
enough to push IDP to the next level in the DP lat-
tice. But as mentioned earlier, density is prominent
in many seemingly sparse queries (like Q5 in TPC-H)
because of multi-referenced columns and transitive in-



ference of predicates. This gives more scope for our
scheme to perform better in such cases as well. From
the previous example, the sub query plans of Query
Q2 at each lattice level are higher than those of Q1 as
seen in Table 1, thus getting more scope for plan reuse
from our optimization scheme.

2 Related Work

There are several works which aim at enumerating on-
ly a fraction of the exponential search space thereby
saving time and memory expended in optimizing the
queries. [8] attempts to reduce the search space by i-
dentifying connected subgraphs of a query graph and
generating query plans only for the sub queries corre-
sponding to those connected subgraphs. PostgreSQL
optimizer implements this feature by default. [1] pro-
poses a rank based pruning of join candidates to fit
DP based query optimization for memory constrained
hand held devices. Retaining only the best ranked join
candidates based on plan cost and selectivity at each
level in the DP lattice and employing left deep trees
alone for plan generation (by eliminating bushy trees)
lead to compromise in plan quality. [4] also employs
pruning of join candidates to extend DP to higher lev-
els for star-chain queries but the extent of pruning is
lesser than in [1]. [4] identifies hub relations (relations
with highest degree) in the join graph (same as query
graph) that are difficult to optimize and applies a sky-
line function based on features (rows, cost,selectivity)
to prune away certain combinations that fail to pro-
vide least cost. The problem with this approach is that
certain join candidates which may give an optimal join
order are getting pruned. On the other hand, [14],
[6] and [9]challenge the conventional ideas of avoiding
cartesian products and implementing left deep trees to
reduce search space claiming that the inclusion of cross
products and bushy trees is essential for optimality. [2]
extends the greedy algorithm by optimizing the man-
ner in which two sub query plans are merged based
on various heuristics like least selectivity and least in-
termediate result size. Variants of this scheme includ-
ing cases like bushy vs linear trees, inner-index based
joins, group by, semi joins and anti joins were imple-
mented. Though the idea is to enhance optimality
within a greedy algorithm, the inherent suboptimality
because of extensive pruning of various possible join
candidates affects the plan quality. Nevertheless, the
scheme scales up to complex queries of 50 relations. In
contrast to this, the extent of pruning induced by It-
erative Dynamic Programming (IDP) is very minimal.
Our scheme keeps the search space of IDP in tact while
reaping benefits out of subplan reuse. Hence, our work
is not aimed at scale up in the number of relations,
but addresses complexity induced by join predicates
among queries.

Our work aims at modifying the Standard best row
variant of Iterative Dynamic Programming (IDP)([5]).

(IDP) performs DP iteratively by breaking to greedy
optimization method at regular intervals as defined by
a parameter “k” before starting the next iteration of
DP. In general, the higher the value of “k”, the better
the plan quality will be, since IDP gets to run in an
ideal DP fashion for a longer time before breaking to
a greedy point. But for each query, depending on its
complexity, there will be a maximum reachable value
of “k” beyond which IDP will run out of memory. So
we aim to extend “k” to achieve better IDP plan.

[17] uses the notion of similar subqueries for com-
plex query optimization. It identifies largest similar
substructures within the query graph and reuses query
plans among themselves. These plans are prematurely
executed and the similar subgraphs in the query graph
are replaced by the result tables from each subquery
execution. Query optimization is continued on the re-
sulting query graph again using a randomized algorith-
m. The problem with this scheme is that the plan is
pre-maturely being executed without knowing whether
it is an optimal join order and it is being replaced by
the result node. This sub optimal replacement poses
a serious hindrance to optimality. Also the represen-
tative subquery plan generated by the randomized al-
gorithm is not guaranteed to be optimal in the first
place.

Since we search for similar subgraphs in the query
graph, we have also done extensive literature survey on
isomorphic graph detection. Partitioned Pattern coun-
t(PPC) trees ([15]) and divide-and-conquer based split
search algorithm in feature trees ([10]) are examples of
similar subtree detection done in a top-down way. [17]
adopts a bottom-up way of sub query identification in
a greedy manner and it aims at identifying only the
largest similar subgraphs within a query graph. [7],
[11] and [3] find largest common subgraph from a set
of graphs. [16] and [12] find similar subgraphs in a set
of graphs S given a query graph Q.

In this work, our aim is not to find the largest
common subgraph or the similar subgraphs to a given
query graph. Instead, within a given graph, we find
similar subgraphs of all sizes. So we adopt a bottom-
up exhaustive similar subgraph generation and it has
to be incrementally done. Because this process is ex-
pensive, we prune certain subgraphs and trade it with
the opportunity of plan reuse.

3 Sub query plan Reuse based Dynam-
ic Programming (SRDP)
Our approach involves two steps:
e Generation of the cover set of similar subgraphs
from the query graph.
e Re-use of query plans for similar subqueries rep-
resented by the similar subgraphs.

The major traits of this method that differentiate it
from the existing works [17] and [4] are:



1. Tt doesn’t generate the largest similar subgraph-
s alone, rather it searches for all-sized common
subgraphs within the query graph to aggressive-
ly re-use plans during the generation of plans at
each level in DP.

2. It avoids pruning of join candidates.

Algorithm 1 : Subquery plan Reuse based Dy-
namic Programming

Require: Query(Selectivity and relation size error bound-
s are pre-set)
Ensure: Plans
1: QueryGraph = makeQueryGraph(Query)
2: CoverSet = buildCoverSet(QueryGraph)
3: for lev=2 to max in the DP lattice do
4:  Plans[lev] = newBuildPlanRel(Plans,CoverSet)
5: end for
6: return Plans

The basic algorithm has been listed as Algorithm 1.
Line 2 of that algorithm corresponds to cover set gen-
eration which will be described in Section 3.1. Using
the cover set of similar subgraphs for plan generation
which is stated in lines 3 to 5 will be described in
Section 3.2. It should be noted that when there is
no more opportunity to reuse plans beyond a partic-
ular lattice level because of lack of similar subqueries,
newBuildPlanRel() uses conventional DP method of
plan generation. The cover set generation and plan
reuse as presented by the basic algorithm are not nec-
essarily memory efficient as such. Our optimized ap-
proach is stated in Algorithm 2.

3.1 Generating cover set of similar subgraphs

We define a pair of similar subgraphs {5, 5’} as a pair
of subgraphs having the same graph structure and sim-
ilar features, i.e, each vertex, v, in S should have a
corresponding vertex, v’, in S’ such that differences
between table sizes and selectivities of the containing
edges lie within the corresponding error bounds. It
should be noted that this need not be the only way
similarity is defined. Another possible approach may
ignore equivalence in structure or selectivities. It may
consider equivalence in intermediate result sizes gener-
ated by two subqueries as the sole heuristic in defining
similarity. But in our paper, we use the former defini-
tion.

Our idea is to generate “sets” of similar subgraphs
and not just “pairs”, so that the query plan generat-
ed for one representative subquery corresponding to
the subgraph can be re-used by all other subqueries
indicated by the remaining subgraphs in the similar

set. The cover set of subgraphs can be expressed as

;Lev:Q Setslev where Setsle'u = Zzoztfl Subgraphseti.

Here “total” indicates the total number of similar sub-
graph sets at level “lev”. Subgraphset; indicates the

i*" similar subgraph set. The summation or total col-

lection of all such subgraph sets at level “lev” is rep-
resented by Sets;.,. The total collection of all such
subgraph sets over all levels gives the cover set of sub-
graphs.

As mentioned in Algorithm 1, after constructing
the query graph (using makeQueryGraph()) from the
join predicates participating in the query, the cover
set of similar subgraphs is built using buildCoverSet/().
This means, from lev=2 to lev=levelsNeeded, sets of
similar subgraphs are identified at each level which
are aggregately termed as “cover set”. For the query

1 r
5 z
2O - - = ¥
3 4 3 4
(a)
(1,2) similar to (1,2")
SETS for LEV-2
— 1->2 1->5 2->3 N 4->5
—1'->2’ 1’->5 2'->3’ 4'->5"
SETS for LEV-3
1->2->3 1->2->3 3->4->5
............................... —_—
1'->2'->3" 1'->2"->3’ 3'->4'->5"
SETS for LEV-4
1->2->3->4 1->2->4->5 2->3->4->5
1->2"->3"->4’ 1'->2'->4’->5' 2'->3"->4"->5’

SETS for LEV-5

1->2->3->4->5
1'->2'->3"->4’->5’

(b)

Figure 3: Sample query graph and its cover set of sub-
graphs

graph in Figure 3(a), [17] identifies the two pentagons
as largest similar queries and executes a single plan
for both of them for reduced query complexity, there-
by fixing join order prematurely. [4] identifies 2’ and
5 as hubs having highest degree and prunes away join
candidates arriving from edges(predicates) incident on
those hubs using a skyline function. But our algo-
rithm generates an optimal plan neither using pruning
nor fixing join order. From the structural informa-
tion of the graph like table sizes and index informa-
tion, we find that 1 is similar to 1’, 2 is similar to
2’ ..., 5 is similar to 5. These pairs are fed into a
seed list. The members of a seed list are grown to
find similar subgraphs of size 2 (or 2 vertices). Sim-



ilar subgraphs should have their table size differences
and also selectivity differences between corresponding
edges lying within acceptable error bounds. For ex-
ample (1,2) and (1’,2’) are 2-sized similar subgraphs
because their selectivities differ within the selectivity
error bound. Such similar subgraphs are put into the
same set. (1,5) and(1’,5") are similar to each other but
are unrelated to (1,2) or (1°,2’). So they go into a new
similar subgraph set at the same level. (Please refer
Figure 3(b)).At level 2, if the plan generator wants to
create a plan for (1°,2’) it will re-use the plan generat-
ed for (1,2), of course by replacing the base relations
with (1°,2%). This extends to further lattice levels.
Generation of cover set involves two stages:

1. Formation and growth of seed list to form 2-sized
subgraph sets.

2. Growth of “lev” sized similar subgraph sets to
obtain “lev+1” sized sets.

Stage 2 is run iteratively till we can no longer find
similar subgraph sets.

3.1.1 Construction of seed List

Seed list construction involves partitioning the base re-
lations participating in the query into various group-
s based upon their table size differences and index-
ing information. Given two relations R; and Rj,
|relSize(R;)—relSize(R;)|

max(relSize(R;),relSize(R;))
rel Error Bound is the acceptable fractional difference
in table sizes, and if R; and R; are similar with respect
to indexes, R; and R; fall into the same group in the
seed list. If R; is indexed, R; also should have an in-
dex and vice-versa, else both of them should not have
any indexes. But if both are indexed, it is not nec-
essary that both the relations should have the same
index, they are allowed to have different kind of in-
dexes built upon them (to avoid similarity definition
being too restrictive). Eventually, a group in the seed
list can contain any number of relations satisfying the
similarity requirement. Seed list for the query graph
in Figure 3(a) is shown below in Table 2.

< relError Bound where

Table 2: SeedList
[ Groupld | Seeds |

0 T
T 2,
2 3,3
3 1,4
1 5,5

3.1.2 Growth of seed list and subgraphs

Growing the seed list implies the formation of sets of
similar subgraphs for level 2 in the DP lattice. Each set
holds graph entries that are similar to each other, and
each graph is represented as a linked list of relation-
ids of base tables. A sample of similar subgraph sets

can be seen in Figure 4(a). Just like growSeedList()
forms sets of subgraphs for level 2 from a set of seeds,
growSubGraph() grows sets of subgraphs at an arbi-
trary level “k” to form level (k+1) sets of subgraphs.
Both of them adopt the same exhaustive style of al-
gorithms. Growth of list and growth of sets of similar
subgraphs are illustrated in Figures 4(a). To grow an

Growing sets of similar subgraphs

Growing a seed List

1 2 n
O O v O 1-52"->...K
3’->5"->...k"
Seeds k-sized graph sets Setsk

1->2 31->33 1->2->.....k->k+1 31->33->....k->k+1

1’52’ L . | 874107 52>, K->(k+1) |, 8'->10"->....k->(k+1)’

3’->5"->....k"->(k+1)"” 9'->14’->....k’->(k+1)”

3’->5’ 9->14

K+1-sized graph sets ~ Setsk+1

2-sizedgraph  Sets2

()

Figure 4: Growth of a seed versus growth of a sub-
graph.

arbitrary seed Seed;, we need to fetch the neighbors of
Seed; from the query graph. If neighbours(Seed;) de-
notes the set of neighbors, each entry in this set has to
be extracted and paired with Seed; to form a 2-sized
graph or a 2-vertex graph. If we can find other 2-vertex
graphs similar to this graph, all of them together can
form a similar subgraph set.

Let (Seed;, Rel;) be the candidate graph for which
similar subgraphs have to be found. There are two
ways to accomplish this:

e Check other neighbors of Seed; barring Rel;.
Combine each of them with Seed; to form a new
subgraph and verify its similarity with the candi-
date graph.

e Grow another seed, Seed;, from the same group as
Seed; in the seed list. Compare the grown graph
with candidate graph for similarity.

The idea behind this method of similar subgraph
identification is that when we use the 1% way, we are
covering all possible subgraphs that contain the same
seed. When we use the 2"¢ way, we are covering all
possible subgraphs that contain other seeds which are
are feature wise (table size is a feature) similar to the
candidate seed. Such similar seeds can be found in the
seed list by referring to the candidate seed’s group.
This signifies the importance of seed list construction.

This method can be illustrated with an example
shown in Figure 5.



grpld/Seeds

Vi/‘Vj {Query Graph as Adjacency list}

Seed List
Steps to grow seed “1” in Grp-0:

L— A) Check neighbours of relation 1
B) Form candidate (1->2)
C) Check other neighbours of 1 to find subgraphs similar to (1->2)

D) Is (1->5) similar to (1->2) ? IF yes, append to set, No proceed to step E

E) Check other seeds in Grp-0, next seed is 1’ 12
1->2'
L F) Check neighbours of 1’ YES
G) Is (1’->2’) similar to (1->2) ? IF yes, append
to set, No proceed to step H level-2-Set

H) Is (1’->5’) similar to (1->2) ? IF yes, append to
set, else proceed to grow next seed in seed list

Figure 5: Example to illustrate growth of a seed in the
seed list.

Two subgraphs are similar if the participating n-
odes are similar with respect to index presence and
have their table sizes differing within rel Error Bound
and selectivity difference between the predicates

|sel(R;)—sel(R;)]|

max(sel(R;),sel(R;)) <
selError Bound. Growth of similar subgraph sets at
a particular level k to produce level (k+1) sets also
uses a similar algorithm as growSeedList(). The only
difference is that a list of level-k sets are being grown
instead of seeds. Just like seeds within a seed group are
similar to each other, subgraphs within the same set
are similar to each other. To grow a seed S;, its neigh-
bour N; is fetched from the query graph (adjacency
list). Whereas, to grow a k-sized graph, say Graphy,
consisting of nodes 5; to S, neighbours of each n-
ode, namely, N; to Nj arrive from the query graph.
Graphy combined with N7 may be similar to Graphy
+ N, thus producing a (k+1)-sized similar subgraph
pair. Similarly, if Graphy, is similar to Graphj,, adding
a vertex IV; to both of them could produce a new sim-
ilar subgraph pair.

is within selErrorBound i.e,

In the case of growSeedList, we have a seed list
with each row corresponding to a seed group. But
in this scenario, we have a list of sets with each set
corresponding to a similar subgraph group of k-sized
graphs. A seed group is also a similar subgraph group
but of graph size 1. To grow a seed, we fetch all its
neighbours to construct level 2 sized subgraphs. But
to grow a subgraph, we need to fetch neighbours of all
the vertices (base relations) participating in the sub-
graph. This is because subgraph growth can happen
via any of the constituent vertices. Similar subgraphs
for a candidate subgraph of level (k+1) are identified

PLAN2 IS CHEAPEST
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Figure 6:
as follows:

e Try growing the level k subgraph with any other
neighbour of any of the constituent nodes, S; to
Sk. Compare the new (k+1)-sized subgraph with
the candidate subgraph.

e Grow any other level k subgraph belonging to the
same similar subgraph set as the k-sized subgraph
from which the candidate subgraph of size (k+1)
has been grown.

3.2 Plan generation using similar sub queries

Plan generation is done once the cover set of similar
subgraphs is available. Suppose there are “n” simi-
lar subgraphs Sy, So,..., S, in a set at an arbitrary
lattice level, and one of them, say S; had its set of
plans (for various join orders) generated through the
traditional DP approach. When we need to generate a
plan for any other member among the remaining (n-1)
subgraphs in the set, we can just access the cheapest
among the set of plans for S; and reuse it for the new
subgraph. Figure 6(b) explains plan reuse by exam-
ple. The copied (newly constructed) plan imitates the
join order, join methods and indexing decisions exact-
ly like the original plan. While building a plan node at
each level (be it root or intermediate node), the opti-
mizer checks the type of join used for the original plan



at that level and reuses the same kind of join. For base
relations, the algorithm checks the kind of scan plan
or index plan built on Plan’s base relations and reuses
the same type of plan for newPlan’s base relations. It
should be noted that if there is no existing index on
the newPlan’s base relation, a sequential scan is done.
For example, in Figure 6(b), base relation 3’ choos-
es to create an index plan because base relation 3 has
an index plan. But the index on 3 may be clustered
and the index on 3’ may be non-clustered. We create
an index plan for the non-clustered index present on
3’, but no fresh indices are created. Our original idea
was to reuse the plan per-se and not by reconstruction.
This could have happened by replacing the leaf nodes
of Plan by those of new Plan dynamically at run-time,
which requires storing multiple leaf sets and not hav-
ing the memory overhead of re-constructing root node
and intermediate nodes. But because of the limita-
tions imposed by PostgreSQL during implementation,
we stick to reconstruction. Since plan reuse is done
by reconstruction, interesting orders such as sorted-
ness can still be retained. If an “ORDER BY” or a
“GROUP BY” clause is present upon an intermediate
node in the newPlan , but not in Plan, it is still pos-
sible to include the sorting decision in newPlan. Like
[2] which pushes the clauses downwards on the tree,
we can check if the current intermediate node covers
just enough leaf nodes (base relations) for the clause
to be applied and do so accordingly. However it must
be observed that the queries used in our experimental
setup consider conjunction of equi-join predicates and
not “group by” or “order by” clauses.

A set of m relations typically needs O(m!) join or-
ders during plan generation. These are logical plans
which specify a relation x should be joined with a re-
lation y before joining the result node to z. But after
applying various join methods, the number of possible
physical plans shoots up. The memory savings for our
scheme come from not generating multiple logical and
physical plans for various join orders for a join candi-
date in the context of plan reuse. But we should note
that no particular combination of relations is being
denied plan construction by our scheme.

3.3 Memory efficient algorithms

Algorithm 1 assumes that the entire cover set can fit
into the main memory before passing it over to plan
generation. But in complex queries, as the number
of relations and predicates increases (especially when
DP can no longer handle), holding the entire cover
set in memory is not possible. Even the generation of
the cover set takes longer time. So we adopt a more
memory-efficient approach.

3.3.1 Improving Cover set generation

At a given lattice level lev, similar subgraph sets are
formed by growing subgraph sets from lev — 1 us-

ing growSubgraph(). We introduce a new function
growSelectedSubGraph() to selectively grow lev — 1
sets. Essentially, the more entries a similar subgraph
set has, the higher is the opportunity of query plan
reuse. But in the case of complete (or very dense)
query graphs of large sizes, the number of entries in a
similar subgraph set will be extremely huge. But there
will be a few more sets at the same lattice level with
relatively fewer subgraph entries.
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\ \ Rak
4 Rsk /
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Figure 7: Increase in population of a subgraph set with
error bound relaxation
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Figure 8: Growth of selected subgraph sets

In Figure 7, there are 4 largest common subgraph-
s in the query graph. Each of them is a dense sub-
graph with an arbitrary number of vertices assumed
to be high. Ideally if the relErrorBound is 0 and



selError Bound is 0, which means that the relation
sizes should be exactly similar and selectivities of pred-
icates must be same between similar subgraphs, we can
find only four entries in each set holding similar sub-
graphs. But if the selectivity and relation size error
bounds are relaxed slightly, more similar subgraphs
can be found and this eventually leads to more entries
of subgraphs in each set. This explains the time taken
in generating these sets on a very dense graph. There
may be sets which hold fewer subgraphs. If we do not
generate such sets, we may lose the plan reuse oppor-
tunity for the subqueries corresponding to those sub-
graphs. But it is worthwhile given the amount of time
and space we save by not generating them. Please note
that pruning subgraph sets doesn’t mean plan prun-
ing, query plans will still be constructed for those join
candidates using conventional DP. It should also be
noted that for sparse query graphs or averagely dense
query graphs, this pruning is not even required since
performance will be insensitive to subgraph pruning in
those cases. This pruning (or avoiding generation) of
“less dense” similar subgraph sets is done by fixing a
parameter “j”. Among all the sets at a given lattice
level, the set with the largest number of subgraphs is
examined and this count is stored in maxStrength. A
threshold is defined as threshold = M For
different values of “j”, threshold is set to different val-
ues. So, the prune factor is “j” and the growth factor
can be defined as v = 1. Any set with its strength
beneath the threshold value is not grown as shown in
Figure 8.

3.3.2 Improving Plan generation

We discussed how to improve memory efficiency of cov-
er set generation by making the cover set smaller and
its generation faster. But it is still required to hold the
entire cover set in main memory. This becomes a bot-
tleneck to plan generation, because while building the
subquery plans, they start competing with the cover
set for memory. So we try to enhance the available
space for subquery plans by avoiding the construction
of cover set at one go. Rather we interleave cover set
generation and plan generation. Growth of subgraph-
s happens only when needed, and the subgraphs are
deleted when they are no longer required. If we want
to generate plans at an arbitrary lattice level “lev”, we
need to construct similar subgraph sets for level “lev”
from the subgraph sets corresponding to level “lev—1"
and immediately delete the “lev — 1”7 subgraph set-
s. This means, at any point of time, main memory
has to hold subgraph sets only from at least one level
and not more than two levels. Lines 11 to 14 in Algo-
rithm 2 illustrate dynamic subgraph construction and
deletion on the fly. Line 15 portrays the construction
of subquery plans at a particular level by looking up
to subgraph sets corresponding to that level.

3.4 Subquery plan Reuse based Iterative Dy-
namic Programming (SRIDP)

In the standard best row variant of IDP parameter-
ized by “k”, dynamic programming is applied on a set
of “n” tables till 1-way join plans, 2-way join plans,
so on upto k-way joins are built. For (k+1)-way join,
a greedy lookahead approach termed “ballooning” is
used to select the least cost plan among the k-way
join plans, and use that plan as a building block along
with the 1-way join plans of relations not participating
in the k-way join plan that was chosen just now. Iter-
atively, dynamic programming is applied on this new
set of 1-way join plans till the value “k” is reached. To
illustrate with an example, suppose k=2. {A,B,C,D}
is a set of relations. 1-way and 2-way join plans of
this set are generated using DP algorithm. But when
3-way join has to be computed, using ballooning, we
choose the plan for {A,C} if it has the least cost a-
mong the join candidates at that lattice level. Now we
have the chosen plan for {A,C} which is called as new
plan {T} and 1-way plans for {B} and {D}. On these
three plans {T}, plan{B}, plan{D}, the next iteration
of IDP is applied. This goes on till the plan for entire
set of relations is generated. Applying ballooning and
formulation of one-way plans for the next iteration are
illustrated in lines 18 to 20 in Algorithm 2.

3.4.1 Why embed our scheme in IDP?

Using our DP-based approach for complex queries, we
can push query optimization to a few more lattice lev-
els as compared to pure DP, but for certain queries
we may not be able to reach completion since we com-
pletely avoid pruning join candidates. For example
given a complex query with 20 relations, DP may run
out of memory at level 10 in the DP lattice. Our
scheme may run out of memory at level 15, still the
savings may not count since the query could not be
run to completion even with our scheme. So we need a
platform to demonstrate our savings clearly. Iterative
Dynamic programming (IDP) is one such algorithm
which can make use of our scheme effectively. Theo-
retically, for a query of a typical complexity, IDP can
always find a “k” which can enable it to run to comple-
tion and return a query plan. In the above mentioned
example of a complex query with 20 relations, if we
set “k” to any value higher than 10, conventional IDP
cannot run to completion but with our scheme embed-
ded in IDP, the maximum possible value of “k” can
be stretched to 15. The advantage is that, because of
extending “k”, greedy selection is being postponed to
a latter point in the DP lattice and a better plan is
obtained. The plan quality of subquery reuse based
IDP(k=15) will be higher than IDP(k=10). This will
be shown in the experiments section. The bottom line
of this approach is that any amount of memory savings
achieved in the “push” created in DP lattice can be
transformed to real benefits by integrating our scheme



with IDP. The detailed algorithm of our IDP based
approach is listed in Algorithm 2.

Algorithm 2 : Memory efficient Sub query plan
reuse based IDP : SRIDP

Require: Query, k, pruneFactor (Selectivity and rela-
tion size error bounds are pre-set)

Ensure: queryplan

1: numRels = numO f Rels(Query)

2: numO fIterations = [numRels/k]

3: QueryGraph = makeQueryGraph(Query)

4: seedList = makeSeedList(QueryGraph)

5: for iteration = 1 do

6: for lev=1to k do

7

8

9

0

1

if lev=2 then
Setsy = growSeedList(seedList)
Plans[2] = newBuildPlanRel(Plans,Setss)

10: else

11: if Setsien—1 can be extended to get new sub-
graph sets then

12: Setsier = growSelectedSubGraph(Setsiey—1,

pruneFactor)

13: delete(Setsiey—1)

14: end if

15: Plans[lev] = newBuildPlanRel(Plans,Setsiey)

16: end if

17:  end for

18:  Plans[lev] = applyBallooning(Plans|lev])

19:  RepeatRels = relationsIn(Plans|lev])

20:  Plans[l]=Plans[l] — 1l-wayPlans(RepeatRels) +
Plans|lev]

21: end for

22: for iteration = 2 to numO fIterations do

23:  Plansllev] = traditionallDP(k,Plans[1],Query)

24: end for

25: return Plans[lev]

4 Performance Study

The experiments were run on a PC with Intel(R) X-
eon(R) 2.33GHz CPU and 3 GB RAM. All the algo-
rithms were implemented in PostgreSQL 8.3.7. Our
experimental database consists of 80 tables. The rela-
tions are randomly populated and the table sizes vary
from 1000 to 8,000,000 tuples. Our experiments mea-
sure the plan quality (which is essentially related to
plan cost) and optimization time over various param-
eter settings. The parameters are number of relation-
s, query density, similarity measures for subqueries
(percentage relaxations over similarity in relation size
and selectivity) and prune factor on cover set genera-
tion(fraction of similar subgraph sets at each level that
will be retained in main memory).

The default experimental settings are listed in Table
3.

Table 3: Default Parameter Settings
| #Rels | Density | Similarity | prune factor |

(13 |2 [30,30 [30 |

All our queries are synthetic and by default, contain
13 relations. We have various density levels with which
queries are generated, namely, 1,2,4 with 1 being the
most dense and the default being 2. Queries are ran-
domly generated by fixing a lower and upper bound
on the number of allowable predicates for a particu-
lar density level. While making sure we generate a
connected graph (without any disjoint sets) we assign
each node a random degree between the lower bound
and the allowed maximum degree at that level. For
example, at density level “d” the maximum allowed
degree of a node is defined as # Relations/d.

Similarity relaxation is in percentage. 30,30 denotes
the relaxation in table size and selectivity difference
among subgraphs to be deemed similar. That means
two or more subgraphs are considered similar to each
other if their table size and selectivity differences are
within 30%. Prune factor is listed as 30, which means
that similar subgraph sets of strength less than 1/30 th
fraction of the highest populated subgraph set should
be pruned off. This default fraction is indeed very
low because we do not wish to lose the opportunity
of subquery plan reuse. This value of prune factor
can be considered equivalent to "no pruning of similar
subgraph sets”.

On a micro level, construction of a query plan for a
join candidate using traditional DP takes 27 microsec
for 2 relations to 110 microsec for 10 relations. But
using SRIDP (which is how we abbreviate our scheme
- Subquery plan Reuse based Iterative Dynamic Pro-
gramming), the time expended in a light weight plan
construction by reuse remains constant at 2 micro sec
for any number of relations. Because for large num-
ber of relations, traditional plan generation needs to
consider combinations from all the lower levels before
constructing the final plan but plan reuse needs to copy
from the cheapest plan of the similar subquery straight
away without making any cost estimation for subplan-
s. So the effort put for reuse remains the same. If
scan of subgraph sets is done and if there is no match
for the given subquery or if there is no other candi-
date in the subgraph set providing reuse, construction
of plan has to be done afresh. Even in that case, the
overhead incurred in scan of sets is 1 micro sec. If at
a particular level in the DP lattice, there are no more
similar subgraphs, even that overhead of subgraph set
scan will disappear.

But there is always some extra time incurred in the
generation of cover set of similar subgraphs which is
controlled by the prune factor (7). So our aim is to
stay as close as possible to conventional IDP in query
optimization time but to get a better plan. This hap-
pens when our subquery plan reuse based IDP can
push the value of ”k”, where “k” determines the level
in the DP lattice where a shift to greedy plan selection
happens (as mentioned in the previous section).



4.1 Varying the number of relations

In this experiment, we vary the number of relation-
s from 12 to 20 and study its effect on plan quali-
ty and running time. Figure 9(a) portrays how our
scheme, SRIDP, pushes the value of “k” beyond what
IDP is capable of. It can be seen that the value of “k”
has consistently improved using our scheme SRIDP as
compared to IDP over the varying number of relations
thus retaining optimality for longer number of itera-
tions before making a greedy choice. The consistent
stretch in “k” across varying relations can be attribut-
ed to the static similarity parameters. Hence the frac-
tion of similar subqueries that are being reused are the
same across all the queries. It is important to under-
stand that “k” is an indicator of the memory savings
our scheme obtained because of plan reuse but not a
measurement of plan quality. It must be noted that
Skyline DP ([4]) proposed purely on the basis of prun-
ing to reduce search space hasn’t finished optimization
and ran out of memory for all the queries shown in the
figure. The explanation is deferred to the discussion
in Section 4.5.

Figure 9(c) and Figure 10(a)show whether the
increase in “k” using our scheme has translated to im-
proved plan quality. Even though plan cost is an esti-
mate made by the database on the expected running
time, it need not be necessarily accurate. But the ex-
ecution time plotted in Figure 10(a) shows that there
is a definite improvement in plan quality.

Figure 9(b) shows the optimization time in sec-
onds. SRIDP takes longer than IDP because cover
set generation needs time. This sacrifice is worthwhile
given the enhancement in plan quality. In one of the
following experiments we show how generating only a
fraction of the cover set by pruning off a few similar
subgraph sets (not plans) can lead to enhanced time
performance without affecting plan quality.

Figures 10(a) and 10(b) show the plan execution
time and total running time (optimization time + plan
execution time) respectively for a set of medium dense
(density level 2) queries. These readings emphasize
that the gain in execution time is worthwhile the op-
timization time overhead, thus making SRIDP win in
overall query running time in most of the cases.

4.2 Varying density

Figure 10(c) shows the variance in plan cost with the
difference in density level.

It can be observed that SRIDP consistently per-
forms better than IDP with respect to plan quality.

4.3 Varying similarity parameters

The parameters to adjust similarity among subqueries
are allowed percentage difference in table size and s-
electivity. For a query of default settings, similarity
relaxation was varied and the effect it had on plan cost

was studied. Figure 11(a) shows the changes in plan
cost with respect to variance in similarity parameters.

We expected that as relaxation increases, the plan
cost becomes higher and higher thereby worsening plan
quality. However we cannot always ensure that plan
cost will monotonically increase with similarity relax-
ation. This is because, we cannot be sure of the num-
ber of copied (similarly reconstructed) plans partici-
pate in the final plan. Also we cannot be sure that
copied plans are always worse, they might actually be
optimal enough.

4.4 Varying similar subgraph sets held in
memory

Generating the entire cover set of similar subgraph set-
s is time consuming. So we conducted a few experi-
ments varying the subgraph set prune factor. This
leads to reduced number of similar subgraph sets that
are generated and thereby lessens memory consump-
tion. We measured plan cost and optimization time.
We observed that plan quality is least affected by the
prune factor. However when considerable subgraph
sets are pruned, the opportunity for subquery plan
reuse decreases and hence the sub query plans need
to be freshly generated. So at a very high fraction of
prune factor, SRIDP runs out of memory. Else there
is no considerable effect on plan quality, but optimiza-
tion time reduces as the fraction of pruned sets grows
higher.

Figure 11(b) plots plan cost against prune factor
while Figure 11(c) depicts optimization time versus
prune factor.

In Figure 11(b), we can observe that prune factor
may change but the plan cost of SRIDP remains con-
stant. The plan generated by IDP has also been plot-
ted for cost comparison. Whereas in Figure 11(c),
we can observe that when prune factor (denominator
of fraction) is lower, the fraction of pruned subgraph-
s becomes higher and hence optimization time drops.
When prune factor is 5 and higher, there was no effect
on optimization time but at 3 and 2, the drop is seen.
Anything beneath that causes SRIDP to run out of
memory at that “k” level.

4.5 Discussion

Our proposed heuristic of reusing subquery plans ex-
perimentally shows that it helps in stretching IDP to
higher lattice levels. But going up by a lattice level
always need not give an optimal plan. Still, our ex-
periments done on random queries show that in most
cases, our scheme performs better. However it has to
be noted that the merit of the plans being reused at
each lattice level will influence the overall plan quality.
We thought of similarity relaxation as such a parame-
ter that will determine the merit of plan reuse, because
as relaxation becomes higher, it is natural that more
plans will be reused and the optimality of overall plan
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will be on a decline. But counter-intuitively, the sen-
sitivity of plan quality to similarity relaxation did not
follow a monotonic pattern. This could be because,
our scheme may choose to reuse “u” plans at a lattice
level. Out of them, “r” choices of reuse may be opti-
mal and “w” reuses may be suboptimal (wrong choic-
es) where u = r 4+ w. But it highly matters how many
of these plans will actually participate in the compo-
sition of the final plan. Even if r < w, it may turn out
that the right choices may contribute to excellent plan
quality. An example to this is Figure 11(a) where there
was a sudden peak in plan quality at 60% and not at
the other values. This is because plan reuse had a de-
teriorative effect on overall quality at that particular
value owing to more w plans participating in the final
plan. But in majority of the cases, the overall plan
quality of SRIDP was better than that of IDP because
more 1 choices contribute to the final plan making our
scheme robust to relaxation parameters. The perfor-
mance of our scheme was even better for high density
queries, please refer to [13] for experiments on density
level 1.

The insensitivity of plan quality to prune factor also
takes the same explanation. An increase or decrease
in the number of plans that are being reused doesn’t
necessarily affect plan quality, because what matters
is the number of reused plans that participate in the
final plan and their individual optimality.

Another significant observation was skyline pruning

proposed by [4], which performs well for star queries
runs out of memory when run on medium to high den-
sity queries as a part of comparison with our scheme.
This is because skyline pruning relies on the presence
of hubs and pruning join candidates corresponding to
the predicates involving the hub relation. At higher
lattice levels, it aggregates relations to form a compos-
ite hub. In a star chain graph, pruning based on hub
identification helps a lot but we tested skyline pruning
on the same star chain queries when an attribute is
multi-referenced. Then, the graph is not a star graph
anymore because as explained earlier, transitive pred-
icates are inferred and the star graph changes into a
random graph where the presence of a single hub is
no longer possible. In such cases, skyline pruning will
not perform as well as it used to. In our experiments,
skyline pruning ran out of memory at the same lat-
tice level as IDP, when compared with SRIDP. This
was because, the extent of pruning of join candidates
employed by skyline pruning did not help it reach com-
pletion. It should be noted that the code for skyline
pruning was obtained from the main author of [4] for
the purpose of comparison and we thank him for pass-
ing us the code.

5 Conclusion

In our work, we proposed and implemented a memo-
ry efficient approach, SRIDP, to generate high quality
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plans for complex queries using an IDP based query
optimizer. The basic idea is to reuse the plans of sim-
ilar sub queries among themselves and to bring about
memory savings from avoiding plan generation for var-
ious join orders of a particular candidate in the DP
lattice. We do not prune any join candidates in the
DP lattice. Our results report a consistent increase in
the value of “k” and better execution time using our
scheme SRIDP as compared to IDP and better plan
of higher quality in most of the cases. Our experi-
ments studied the performance variance over a variety
of parameters.

References

[1] I. T. Bowman and G. N. Paulley. Join enumer-
ation in a memory-constrained environment. In

ICDE, pages 645-654, 2000.

N. Bruno, C. Galindo-Legaria, and M. Joshi.
Polynomial heuristics for query optimization.
ICDE, pages 589-600, 2010.

B. Cuissart and J.-J. Hébrard. A direct algorithm
to find a largest common connected induced sub-
graph of two graphs. In GbRPR, pages 162-171,
2005.

G. C. Das and J. R. Haritsa. Robust heuristics
for scalable optimization of complex sql queries.
In ICDE, pages 1281-1283, 2007.

D. Kossmann and K. Stocker. Iterative dynamic
programming: A new class of query optimization
algorithms. ACM Trans. on Database Systems,
25:2000, 1998.

R. S. G. Lanzelotte, P. Valduriez, and M. Zait. On
the effectiveness of optimization search strategies
for parallel execution spaces. In VLDB, pages
493-504, 1993.

J. J. McGregor. Backtrack search algorithms and
the maximal common subgraph problem. Softw.,
Pract. Exper., 12(1):23-34, 1982.

[8] G. Moerkotte and T. Neumann. Dynamic pro-
gramming strikes back. In SIGMOD, pages 539—
552, 2008.

[9] K. Ono and G. M. Lohman. Measuring the com-
plexity of join enumeration in query optimization.
In D. McLeod, R. Sacks-Davis, and H.-J. Schek,
editors, VLDB, pages 314-325. Morgan Kaufman-

n, 1990.

M. Rarey and J. S. Dixon. Feature trees: A
new molecular similarity measure based on tree
matching. Journal of Computer-Aided Molecular
Design, 12(5):471-490, 1998.

[11] A. Tatsuya. A polynomial time algorithm for find-
ing a largest common subgraph of almost trees of
bounded degree. IFICE transactions on funda-
mentals of electronics, communications and com-

puter sciences, 76(9):1488-1493, 1993-09-25.

J. R. Ullmann. An algorithm for subgraph iso-
morphism. J. ACM, 23(1):31-42, 1976.

M. V. vamsikrishna. Exhaustive reuse of sub-
query plans to stretch iterative dynamic program-
ming for complex query optimization. M.Sc the-
sis, 2011.

[14] B. Vance and D. Maier. Rapid bushy join-order
optimization with cartesian products. In SIG-

MOD, pages 35-46, 1996.

[15] P. Viswanath, M. N. Murty, and S. Bhatnagar.
Fusion of multiple approximate nearest neighbor
classifiers for fast and efficient classification. In-

formation Fusion, 5(4):239-250, 2004.

[16] X. Yan, P. S. Yu, and J. Han. Substructure sim-
ilarity search in graph databases. In SIGMOD,

pages 766777, 2005.

[17] Q. Zhu, Y. Tao, and C. Zuzarte. Optimizing com-
plex queries based on similarities of subqueries.

Knowl. Inf. Syst., 8(3):350-373, 2005.



